

OrienterNet

Meta²

Visual Localization in 2D Public Maps with Neural Matching

Paul-Edouard Sarlin¹ Daniel DeTone² Tsun-Yi Yang² Armen Avetisyan² Julian Straub² Tomasz Malisiewicz² Samuel Rota Bulo² Richard Newcombe² Peter Kontschieder² Vasileios Balntas²

CVPR 2023 psarlin.com/orienternet Poster THU-PM-098

Humans use simple 2D maps

Zero-shot generalization

Zero-shot generalization

Positioning

Recover the 6-DoF pose of the device

- 3D translation + rotation
- global reference frame

GPS+compass is not enough

- Low accuracy
- Only 3 DoF
- Commonly unreliable: urban canyon, metal structures

Google Maps

Mapping fleet Frequent updates

Mapillary

Mihai Dusmanu

Risk of inversion

Mapping fleet Frequent updates

Compression & Quantization

je

Very large

Risk of inversion

Privacy-preserving descriptors

Semantic 2D maps

OpenStreetMap

3D maps

Mapping fleet Frequent updates

Public No appearance updates

Storage

Very large

Compact Transfer on-device

Risk of inversion

No private info

Simplifying assumptions

Known gravity direction

Problem setup

128m x 128m

image + gravity

OpenStreetMap

gravity-aligned

Training a single strong model

- Publicly-available data from Mapillary
- 760k images from 12 cities across Europe & US
- Hand-held, car, bike

input image

raster map

likelihood

input image

raster map

likelihood

input image raster map log-likelihood likelihood

28

28

AR data – Aria glasses

bus stop position

Sequence localization

Fuse successive predictions assuming known relative poses

$$P(\boldsymbol{\xi}_i|\{\mathbf{I}_j\}, \operatorname{map}) = \prod_k P(\boldsymbol{\xi}_i \oplus \boldsymbol{\hat{\xi}}_{ij} | \mathbf{I}_j, \operatorname{map})$$

Sequence localization

Fuse successive predictions assuming known relative poses

$$P(\boldsymbol{\xi}_i|\{\mathbf{I}_j\}, \mathrm{map}) = \prod_k P(\boldsymbol{\xi}_i \oplus \hat{\boldsymbol{\xi}}_{ij}|\mathbf{I}_j, \mathrm{map})$$

Sequence localization

single-frame likelihood

sequence likelihood

Sequence localization – Aria

input image

single-frame likelihood

final trajectories

OrienterNet

Meta²

Visual Localization in 2D Public Maps with Neural Matching

Paul-Edouard Sarlin¹ Daniel DeTone² Tsun-Yi Yang² Armen Avetisyan² Julian Straub² Tomasz Malisiewicz² Samuel Rota Bulo² Richard Newcombe² Peter Kontschieder² Vasileios Balntas²

CVPR 2023 psarlin.com/orienternet Poster THU-PM-098