

# CAP-VSTNet: Content Affinity Preserved Versatile Style Transfer

Linfeng Wen Chengying Gao Changqing Zou

Sun Yat-Sen University, Guangzhou, China CAD&CG, Zhejiang University and Zhejiang Lab, Hangzhou, China



#### The task of style transfer



#### Popular approach



#### **Problem: content affinity loss**



Inconsistent stylization



Unclear details



Noticeable seams



Ours

#### **CAP-VSTNet**

Reversible residual network based on channel refinement module

 avoid content affinity loss

② Unbiased linear transform based on Cholesky decomposition

- preserve feature affinity

③ Training loss based on Matting Laplacian

- preserve pixel affinity

#### **CAP-VSTNet**

- State-of-the-art performance
- Real-time image/video style transfer
- Style interpolation
- Ultra-resolution (4K)

#### **Illustration of CAP-VSTNet**



#### Three steps

- Forward inference (➡)
- Transfer (cWCT)
- Backward inference (+)

- Reversible residual network

• Bijective transformation: preserve all information to avoid content affinity loss

- Reversible residual network

- Bijective transformation: preserve all information to avoid content affinity loss
- Channel Refinement (CR): remove redundant information in reversible network



Alternative design choices of CR module

- cWCT

• Unbiased linear transform: preserve feature affinity

- cWCT

- Unbiased linear transform: preserve feature affinity
- Cholesky decomposition: derivable, stable and efficient

- cWCT

- Unbiased linear transform: preserve feature affinity
- Cholesky decomposition: derivable, stable and efficient

| Me            | thod      | AdaIN        | WCT          | LinearWCT    | cWCT         |
|---------------|-----------|--------------|--------------|--------------|--------------|
| Reversible    |           | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| Sta           | Stability |              |              | $\checkmark$ | $\checkmark$ |
| Learning-free |           |              | $\checkmark$ |              | $\checkmark$ |
| Time          | C=32      | 0.066        | 1.186        | 0.288        | 0.097        |
| Time          | C=256     | 0.424        | 3.205        | 2.419        | 0.808        |

- Training loss

- $L_{total} = L_s + \lambda_m L_m + \lambda_{cyc} L_{cyc}$ ,
- Matting Laplacian loss  $L_m$ : address pixel affinity problem led by the linear transform

- Training loss

- $L_{total} = L_s + \lambda_m L_m + \lambda_{cyc} L_{cyc}$ ,
- Matting Laplacian loss  $L_m$ : address pixel affinity problem led by the linear transform
- Cycle reconstruction loss  $L_{cyc}$ : alleviate numerical error problem of reversible network

- Video style transfer

- Content of stylized video: stable
- Style of stylized video : need more constraint

- Video style transfer

- Content of stylized video: stable
- Style of stylized video : need more constraint  $\square$  ① adjust the style loss  $L_s$

(2) add regularization in  $L_{total}$ 

#### - Photorealistic image style transfer

| Method        | PhotoWCT [25] | WCT <sup>2</sup> [40] | PhotoNet [2] | DSTN [14] | PCA-KD [8] | Ours  |
|---------------|---------------|-----------------------|--------------|-----------|------------|-------|
| <b>SSIM</b> ↑ | 0.582         | 0.644                 | 0.608        | 0.566     | 0.634      | 0.650 |
| Gram loss↓    | 1.539         | 0.796                 | 1.970        | 0.996     | 1.162      | 0.750 |
| Time↓         | 16.88         | 0.32                  | 0.19         | 0.92      | 0.05       | 0.12  |
| Parameters    | 8.35M         | 10.12M                | 40.24M       | 103.45M   | 334K       | 4.09M |

• The execution time is evaluated on  $1024 \times 512$  resolution.

- Photorealistic image style transfer



- Photorealistic/Artistic video style transfer

• Photorealistic video

| Mathad                | Crom local  | Temporal loss↓ |       |  |
|-----------------------|-------------|----------------|-------|--|
| Method                | Grain ioss↓ | i=1            | i=10  |  |
| WCT <sup>2</sup> [40] | 0.665       | 0.040          | 0.108 |  |
| CCPL [39]             | 0.527       | 0.069          | 0.132 |  |
| Ours                  | 0.435       | 0.039          | 0.107 |  |

#### Artistic video

| Mathad          | Cram local  | Temporal loss↓                                          |       |  |
|-----------------|-------------|---------------------------------------------------------|-------|--|
| Method          | Grain ioss↓ | Tempo<br>i=1<br>0.117<br><u>0.108</u><br>0.141<br>0.128 | i=10  |  |
| LinearWCT [23]  | 0.473       | 0.117                                                   | 0.237 |  |
| ReReVST [37]    | 0.815       | <u>0.108</u>                                            | 0.235 |  |
| IEContraAST [6] | 1.062       | 0.141                                                   | 0.262 |  |
| CCPL [39]       | 0.371       | 0.128                                                   | 0.251 |  |
| Ours            | 0.436       | 0.104                                                   | 0.228 |  |

- Video style transfer
- Style interpolation
- Ultra-resolution

[Video]



# CAP-VSTNet: Content Affinity Preserved Versatile Style Transfer

Linfeng Wen Chengying Gao Changqing Zou

Sun Yat-Sen University, Guangzhou, China CAD&CG, Zhejiang University and Zhejiang Lab, Hangzhou, China

For more information: <a href="https://github.com/linfengWen98/CAP-VSTNet">https://github.com/linfengWen98/CAP-VSTNet</a>

### Thank you for your watching!