

Position-guided Text Prompt for Vision-Language Pre-training

Presented by Alex Jinpeng Wang May 30th, 2023

Stage 1: Motivation

Architectures in vision-language pre-training

Figure 2. Three widely-used categories of vision-and-language models. The main difference is where to perform cross-modality information fusion. One-stream fuse at early stage and dual-stream fuse at late stage, while the last type fuse at middle stage.

Architectures in vision-language pre-training

Related Works in Vision-Language Pre-training: (2 years ago)

Transform Image Into Region Features with Faster-RCNN

Input **Region Features** and **Bounding Box** (position) together as visual signals

OSCAR, ECCV' 20

UNITER, ECCV'20

Architectures in vision-language pre-training

Related Works in Vision-Language Pre-training: (in 2 years)

Input Raw-Pixel Image without Position Information Directly

Anderson et al. Bottom-up and top-down attention for image captioning and visual question answering[C, CVPR, 2018.

Motivation

Bring Position-information into these end-to-end models, and keep fast inference time for downstream tasks at the same time.

Stage 2: Methodology

Position-guided Text Prompt

"The block [P] has a [O]."

Block Tag

$$I = \operatorname{argmax}_{y \in [1, \dots, M]} \left(\frac{\exp(h^T e_y)}{\sum_{w \in V} \exp(h^T e_w)} \right)$$

Figure 3. **Overall framework.** Any pre-training framework (one-stream, dual-stream, dual-stream+fusion encoder in Fig. 2) and most objectives can be integrated with our *PTP*. Dashed line indicates that the model may not exist. We remove the text prompt for the downstream task and evaluate the model as usual.

Stage 3: Experiments

Ablation & More Analysis

Architecture Variations

Table 6. The ablation on different architectures under 4M setting. We report the i2t and t2i results on MSCOCO (5K test set). As we do not used object detector in downstream tasks, *PTP* is 20 times faster than object-feature based model.

Method	Time		MSCOCO (5K test set)							
		Image \rightarrow Text			Te					
		R@1	R@5	R@10	R@ 1	R@5	R@10	Avg		
				One	e-stream	Models				
ViLT [16]	~ 15	61.8	86.2	92.6	41.3	72.0	82.5	72.7		
PTP-ViLT	~ 15	67.1	90.5	94.3	45.3	79.1	88.4	$77.5_{+4.8}$		
			Dual-stream Models							
CLIP† [32]	~ 27	64.9	83.2	90.1	50.4	76.3	84.7	74.9		
PTP-CLIP	~ 27	68.3	86.4	92.7	54.1	80.1	86.8	78.1 $_{+3.2}$		
			Du	al-stream	+ Fusion	1 encode	r Models			
BLIP † [<mark>19</mark>]	~ 33	75.2	93.3	96.3	57.4	82.1	89.5	82.3		
PTP-BLIP	~33	77.6	94.2	97.0	59.4	83.4	90.4	$83.7_{+1.5}$		
		Object-feature Based Models								
VinVL [46]	$\sim \! 650$	74.9	92.6	96.3	58.1	83.2	90.1	82.5		

Pretext task or prompt?

Table 7. Text prompt vs. additional pretext head.The lastcolumn is COCO captioning task.

Method	COCO	F30K	NLVR	Captioning
	TR@1	TR@1	Acc(%)	CIDER
Baseline	70.6	53.4	76.1	121.2
Pretext	72.3 (1.7↑)	54.7 (2.3↑)	76.9 (0.8↑)	123.5 (2.3↑)
Prompt	73.2 (2.6 ↑)	55.4 (2.0 ↑)	77.9 (1.8 ↑)	127.2 (6.0 ↑)

Experiment

For Retrieval Task

Zero-shot results (trained on 4M data) even comparable with CoCA (1.8B data)

Table 1. **Results of zero-shot image-text retrieval on Flickr30K and MSCOCO datasets.** We gray out the methods that train on much larger corpus or use much larger models. † means the model implemented by ourself and trained on same dataset since the original datasets is not accessible or not trained on these splits. The Avg is the mean of all image-to-text recalls and text-to-image recalls.

Method	#Images	Parameters		MSCOCO (5K test set)						Flickr30K (1K test set)						
			In	hage \rightarrow 7	Fext	Text \rightarrow Image				In	hage \rightarrow 7	Text	Те	$ext \rightarrow Im$	age	
			R@1	R@5	R@10	R@1	R@5	R@10	Avg	R@1	R@5	R@10	R@1	R@5	R@10	Avg
Unicoder-VL [18]	4M	170M	-	_	_	_	_	_		64.3	85.8	92.3	48.4	76.0	85.2	75.3
ImageBERT [31]	4M	170M	44.0	71.2	80.4	32.3	59.0	70.2	59.5	70.7	90.2	94.0	54.3	79.6	87.5	79.4
ViLT [16]	4M	87M	41.3	79.9	87.9	37.3	67.4	79.0	65.5	69.7	91.0	96.0	53.4	80.7	88.8	79.9
PTP-ViLT (ours)	4M	87M	55.1	82.3	89.1	43.5	70.2	81.2	$70.2_{\pm 4.7}$	74.5	93.7	96.5	60.3	85.5	90.4	$83.5_{+3.6}$
BLIP † [19]	4M	220M	57.4	81.1	88.7	41.4	66.0	75.3	68.3	76.0	92.8	96.1	58.4	80.0	86.7	81.7
PTP-BLIP (ours)	4M	220M	72.3	91.8	95.7	49.5	75.9	84.2	77.3 _{+9.0}	86.4	97.6	98.9	67.0	87.6	92.6	$88.4_{+6.7}$
PTP-BLIP (ours)	14 M	220M	73.2	92.4	96.1	53.6	79.2	87.1	78.6	87.1	98.4	99.3	73.1	91.0	94.8	90.3
CLIP [32]	300M	173M	58.4	81.5	88.1	37.8	62.4	72.2	66.7	88.0	98.7	99.4	68.7	90.6	95.2	90.1
ALIGN [14]	1.8B	820M	58.6	83.0	89.7	45.6	69.8	78.6	70.9	88.6	98.7	99.7	75.7	93.8	96.8	92.2
FILIP [41]	340M	787M	61.3	84.3	90.4	45.9	70.6	79.3	72.0	89.8	99.2	99.8	75.0	93.4	96.3	92.3
Flamingo [2]	2.1 B	80B	65.9	87.3	92.9	48.0	73.3	82.1	74.9	89.3	98.8	99.7	79.5	95.3	97.9	93.4
CoCa [24]	3B	2.1B	66.3	86.2	91.8	51.2	74.2	82.0	75.3	92.5	99.5	99.9	80.4	95.7	97.7	94.3

Table 3. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. C: CIDEr, S: SPICE, B@4:
BLEU@4. Notice that VinVL [‡] and LEMON [‡] require high resolution (800×1333) input images.

Method	#Images	Parameters		NoCaps validation						COCO Caption				
			in-do	main	near-d	lomain	out-domain Overall			Karpathy test				
			CIDEr	SPICE	CIDEr	SPICE	CIDEr	SPICE	CIDEr	SPICE	B@4	METEOR	SPICE	CIDEr
OSCAR [23]	4M	155M	79.6	12.3	66.1	11.5	45.3	9.7	80.9	11.3	37.4	30.7	23.5	127.8
VinVL‡ [46]	5.7M	347M	103.1	14.2	96.1	13.8	88.3	12.1	95.5	13.5	38.5	30.4	23.4	130.8
BLIP † [<mark>19</mark>]	4M	220M	106.5	14.4	99.3	13.6	95.6	13.0	98.8	14.2	37.0	_	_	122.6
PTP-BLIP (ours)	4M	220M	108.3	14.9	105.0	14.2	105.6	14.2	106.0	14.7	42.5	32.3	25.4	145.2
Enc-Dec [6]	15M	_	92.6	12.5	88.3	12.1	94.5	11.9	90.2	12.1	_	_	_	110.9
BLIP [<mark>19</mark>]	14M	220M	111.3	15.1	104.5	14.4	102.4	13.7	105.1	14.4	38.6	_	_	129.7
PTP-BLIP (ours)	14 M	220M	112.8	15.2	107.3	14.9	108.1	14.3	106.3	14.7	42.7	32.4	25.4	145.3
SimVLM _{huge} [40]	1.8 B	1.2B	113.7	_	110.9	_	115.2	_	112.2	_	40.6	33.7	25.4	143.3
LEMON _{huge} [‡] [12]	200M	675M	118.0	15.4	116.3	15.1	120.2	14.5	117.3	15.0	42.6	_	_	145.5
Beit-3 [39]	35M+	1.9 B	—	—	—	—	—	—	—	_	44.1	32.4	25.4	147.6

Table 4. Comparison with state-of-the-art methods on VQA and NLVR². Para. is short for parameters. Notice that VinVL [46] uses larger vision backbone and object feature from faster-rcnn. ALBEF [20] performs an extra pre-training step for NLVR².

Method	#Images	Para.	V	QA	NL	NR^2	
			test-dev	test-std	dev	test-P	
UNITER [8]	4M	155M	72.70	72.91	77.18	77.85	
OSCAR [23]	4M	155M	73.16	73.44	78.07	78.36	
UNIMO [22]	5.6M	307M	75.06	75.27	-	-	
VinVL _L [46]	5.6M	347M	76.52	76.60	82.67	83.98	
ViLT [16]	4M	87M	70.33	-	74.41	74.57	
PTP-ViLT	4M	87M	$72.13_{\pm 1.8}$	74.36	$76.52_{\pm 2.1}$	$77.83_{+3.3}$	
BLIP † [19]	4M	220M	73.92	74.13	77.52	77.63	
PTP-BLIP	4M	220M	$76.02_{\pm 2.1}$	$76.18_{\pm 2.0}$	$80.73_{\pm 3.2}$	$81.24_{\pm 3.8}$	
ALBEF [20] BLIP [19] <i>PTP-</i> BLIP	14M 14M 14M	210M 220M 220M	75.84 77.54 78.44 _{+2.9}	76.04 77.62 78.33 +1.7	82.55 82.67 84.55 _{+1.9}	83.14 82.30 83.17 _{+0.9}	
SimVLM [40]	1.8B	1.2B	77.87	78.14	81.72	81.77	
GIT [38]	0.8B	0.7B	-	78.81	-	-	
CoCa [24]	3B	2.1B	84.2	84.0	86.1	87.0	

Table 5. Comparisons with state-of-the-art methods for text-to-video retrieval on the 1k test split of the MSRVTT dataset.

Method	R@1 ↑	R@5 ↑	R@10 ↑	MdR↓
ActBERT [49]	8.6	23.4	33.1	36.0
MIL-NCE [28]	9.9	24.0	32.4	29.5
Frozen-in-time [5]	18.7	39.5	51.6	10.0
OA-Trans [37]	23.4	47.5	55.6	8.0
PTP-ViLT	27.9	52.5	56.3	7.0

Visualization

Figure 5. The full-in-the-blank task evaluation. We ask the model to predict what objects are contained in given block and predict which blocks contain specific object.

Project Website

https://sites.google.com/view/showlab