Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action Recognition from Egocentric RGB Videos

Yilin Wen¹, Hao Pan², Lei Yang^{3,1}, Jia Pan¹, Taku Komura¹, Wenping Wang⁴

¹The University of Hong Kong

²Microsoft Research Asia ³TransGP

⁴Texas A&M University

THU-PM-061

Tasks

➢Input: Observed RGB video under egocentric view

Output: 1) Per-frame 3D hand joints position in the camera space;2) Performed action category.

Video from FPHA dataset[1] **Hand pose for the frames:** GT / Est. **Action for the sequence:** Pour milk (GT) / Pour milk (Est.)

Overview

> A *hierarchical temporal transformer* with two cascaded blocks

Overview

> A *hierarchical temporal transformer* with two cascaded blocks

Overview

- > A *hierarchical temporal transformer* with two cascaded blocks, to:
 - 1. leverage different time spans for pose and action estimation.
 - 2. *model their semantic correlation* by deriving the high-level action from the low-level hand motion and manipulated object label.

Motivation

Observations

Severe ambiguity of action types judged from individual frames

➢ Frequent occlusion and truncations for perframe hand pose.

Close Juice Bottle

Pour Liquid Soap

Open Juice Bottle

Tear Paper

Our Key Designs

 ✓ Leverage the temporal information for both pose and action

Motivation

Observations

- Severe ambiguity of action types judged from individual frames
- ➢Frequent occlusion and truncations for perframe hand pose.
- Different temporal granularity and semantic correlation between hand-action.

Our Key Designs

- ✓ Leverage the temporal information for both pose and action
- ✓ Build a hierarchical temporal transformer with two cascaded blocks, to cope with the different temporal granularity and semantic correlation between hand-action.

 $L_H(I) = \|H_I^{2.5D} - H_{I,gt}^{2.5D}\|_1$. $H^{2.5D}$ is 2D+Depth for hand joints

 $L_0(I) = CE(w_I^o, \Pr(O|I)). w_I^o$ is a one-hot vector for the target distribution.

Hand Pose Estimation with Short-Term Temporal Cue

Pose block *P* focuses on a narrower temporal receptive field to output per-frame 3D hand pose and manipulated object label.

 $L_H(I) = \|H_I^{2.5D} - H_{I,gt}^{2.5D}\|_1$. $H^{2.5D}$ is 2D+Depth for hand joints

 $L_0(I) = CE(w_I^o, \Pr(O|I)). w_I^o$ is a one-hot vector for the target distribution.

Hand Pose Estimation with Short-Term Temporal Cue

- Pose block *P* focuses on a narrower temporal receptive field to output per-frame 3D hand pose and manipulated object label.
 - Input video is divided into consecutive segments by a shifting window strategy with window size *t*, segments are processed by *P* in parallel.

Action Recognition with Long-Term Temporal Cue

- Action block A uses the full video to predict the action label.
- The input of *A* leverages the per-frame predicted hand pose, object label and image feature.

 $L_A(S) = CE(w_S, \Pr(A|I))$. w_S is a one-hot vector for the target distribution.

🗌 Input Image Frame 🗔 Ignored Frame 🗖 Padded Frame	Training Stage
	···
<i>t</i> -1 <i>t</i> frames to P <i>T</i> frames to A	
<i>t</i> frames to P <i>T</i> frames to A	Testing Stage

Segmentation Strategy to Divide Long Videos into HTT Inputs

Videos longer than T frames are divided into consecutive clips by adopting the shifting window strategy with a window size T:

In testing stage, the hand pose are estimated by *P*, the action category is voted from the predictions among segmented clips.

🗖 Input Image Frame 🗌 Ignored Frame 🗖 Padded Frame	Training Stage
	· ···
	··□ ·· □···■
<i>t</i> -1 <i>t</i> frames to P <i>f</i> frames to A	
<i>t</i> frames to P <i>T</i> frames to A	Testing Stage

Segmentation Strategy to Divide Long Videos into HTT Inputs

Videos longer than T frames are divided into consecutive clips by adopting the shifting window strategy with a window size T:

- In testing stage, the hand pose are estimated by *P*, the action category is voted from the predictions among segmented clips.
- In training stage, for data augmentation, the starting frame for shifting window is offset to each of the first *t* frames.

Results (FPHA[1])

Action (GT / Est.) : Scratch Sponge / Scratch Sponge

Action (GT / Est.):

Close Peanut Butter / Close Peanut Butter

Hand pose: GT / Est.

Results (FPHA[1])

Action Recognition

	Joule-color [2]	Two-Stream [3]	H+O [4]	Collaborative [5]	Ours
Process both hand-action			\checkmark	\checkmark	\checkmark
Acc.	66.78	75.30	82.43	85.22	94.09

50

3D Hand Pose Estimation

	Input	Process both hand-action
H+O [4]	Image	\checkmark
Collaborative [5]	Video	\checkmark
ACE-Net[6]	Video	
Ours	Video	\checkmark

Results (H2O[7])

Action (GT / Est.) : Put in Cocoa / Put in Cocoa

Action (GT / Est.) : Close Chips / Close Chips

Hand pose: GT / Est.

Results (H2O[7])

Action Recognition

	Process both hand-action	Acc.
C2D [8]		70.66
I3D [9]		75.21
SlowFast [10]		77.69
H+O [4]	\checkmark	68.88
H2O w/ ST-GCN [7]	\checkmark	73.86
H2O w/ TA-GCN [7]	\checkmark	79.25
Ours	\checkmark	86.36

3D Hand Pose Estimation

		LPC [11]	H+O [4]	H2O [7]	Ours
Input		Image	Image	Image	Video
Process both hand-action			\checkmark	\checkmark	
MEPE (in <i>mm</i>) Camera Space	Left	39.56	41.42	41.45	35.02
	Right	41.87	38.86	37.21	35.63

Ablation and Visualization

>Hand Pose Estimation with Short-Term Temporal Cue.

 \succ Compared with *t*=1, we show enhanced robustness under occlusion and truncation.

Compared with t=128, we avoid over-attending to distant frames, therefore ensuring sharp local motion.
Video from H2O dataset [7]

Ablation and Visualization

>Action Recognition with Long-Term Temporal Cue

Ours w/t=16, T=128Est: take out espresso/GT: take out espresso Frame 1

The arrow indicates the attention to the current frame

Attention Weights in the Final Layer of A From Action Token to Frames

0.1

0.2

0.0

- The last few frames are the key for recognizing the action of *take out espresso*.
- ➢In response our network pays most attention to these frames.

Video from H2O dataset [7]

Concluding Remarks

≻Task

• 3D hand pose estimation and action recognition from egocentric RGB videos

≻Key ideas

- Leverage the temporal information for both pose and action.
- Build a hierarchical temporal transformer with two cascaded blocks, to cope with the different temporal granularity and semantic correlation between hand-action.

➢Results

• State-of-the-art results on FPHA and H2O datasets.

Reference

[1] Garcia-Hernando, G., Yuan, S., Baek, S., & Kim, T. K. (2018). First-person hand action benchmark with rgb-d videos and 3d hand pose annotations. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 409-419).

[2] Hu, J. F., Zheng, W. S., Lai, J., & Zhang, J. (2015). Jointly learning heterogeneous features for RGB-D activity recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 5344-5352).

[3] Feichtenhofer, C., Pinz, A., & Zisserman, A. (2016). Convolutional two-stream network fusion for video action recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1933-1941).

[4] Tekin, B., Bogo, F., & Pollefeys, M. (2019). H+ o: Unified egocentric recognition of 3d hand-object poses and interactions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 4511-4520).

[5] Yang, S., Liu, J., Lu, S., Er, M. H., & Kot, A. C. (2020). Collaborative learning of gesture recognition and 3D hand pose estimation with multiorder feature analysis. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16* (pp. 769-786). Springer International Publishing.

[6] Fan, Z., Liu, J., & Wang, Y. (2020). Adaptive computationally efficient network for monocular 3d hand pose estimation. In *Computer Vision– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16* (pp. 127-144). Springer International Publishing.

[7] Kwon, T., Tekin, B., Stühmer, J., Bogo, F., & Pollefeys, M. (2021). H2o: Two hands manipulating objects for first person interaction recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 10138-10148).

[8] Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7794-7803).

[9] Carreira, J., & Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 6299-6308).

[10] Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 6202-6211).

[11] Hasson, Y., Tekin, B., Bogo, F., Laptev, I., Pollefeys, M., & Schmid, C. (2020). Leveraging photometric consistency over time for sparsely supervised hand-object reconstruction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 571-580). 20