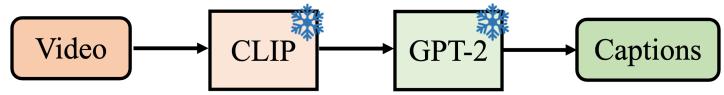


Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval?

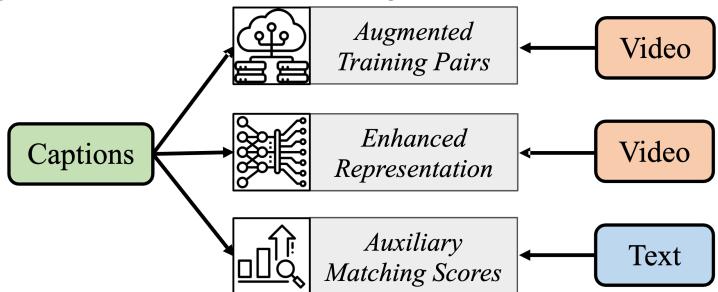
Wenhao Wu^{1,2} Haipeng Luo³ Bo Fang³ Jingdong Wang² Wanli Ouyang^{4,1}

¹The University of Sydney ²Baidu Inc. ³UCAS ⁴Shanghai AI Laboratory



WED-AM-236

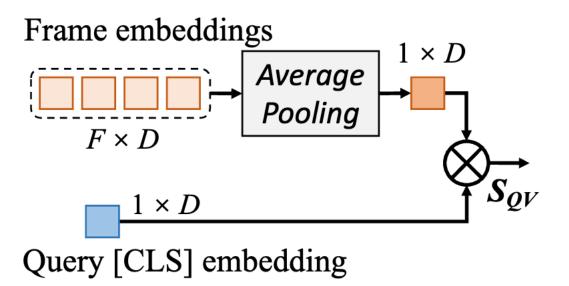
Code & Models


Key Innovation

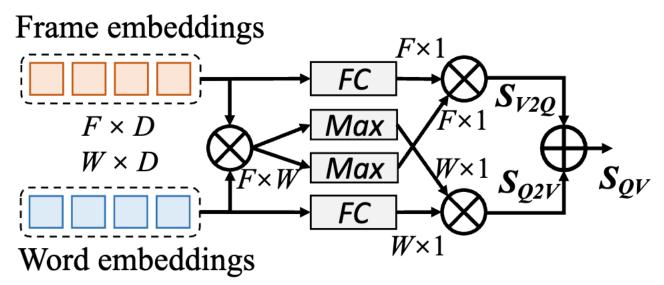
(a) Zero-Shot Caption Generation

We leverage the knowledge of large-scale vision-language models (VLMs), such as CLIP, and large language models (LLMs), such as GPT-2, to generate diverse captions for arbitrary videos.

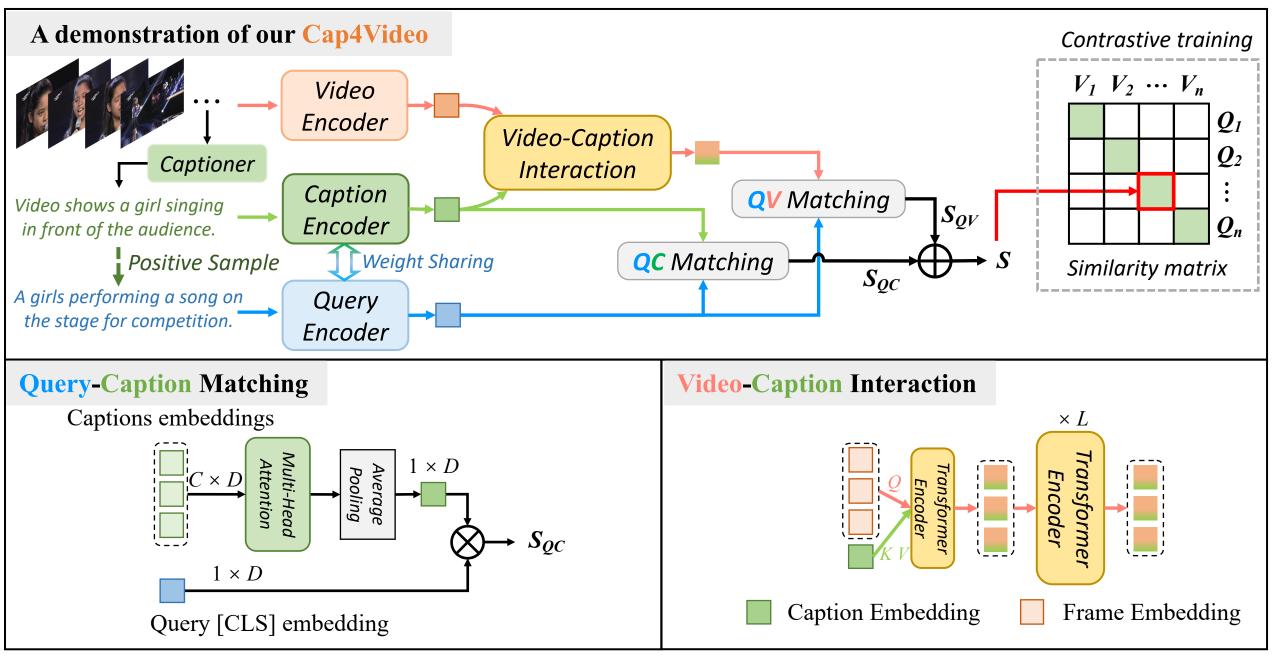
(b) Captions for Text-Video Matching



Our Cap4Video improves upon existing text-video retrieval methods through three key aspects.


Background: Text-Video Retrieval

1 Global embedding matching



(2) Fine-grained embedding matching

Query-Video Matching: Two typical mechanisms

Our Method

Learning Objectives

Query-Caption Matching Loss

Query-Video Matching Loss

$$\mathcal{L}_{Q2C} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qc}(\mathbf{e_{ti}}, \mathbf{e_{ci}})/\tau)}{\sum_{j}^{B} \exp(s_{qc}(\mathbf{e_{ti}}, \mathbf{e_{cj}})/\tau)}, \qquad \mathcal{L}_{Q2V} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vi}})/\tau)}{\sum_{j}^{B} \exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vj}})/\tau)}, \qquad \mathcal{L}_{Q2V} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vj}})/\tau)}{\sum_{j}^{B} \exp(s_{qv}(\mathbf{e_{tj}}, \mathbf{e_{ci}})/\tau)}, \qquad \mathcal{L}_{V2Q} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vj}})/\tau)}{\sum_{j}^{B} \exp(s_{qv}(\mathbf{e_{tj}}, \mathbf{e_{ci}})/\tau)}, \qquad \mathcal{L}_{Q2V} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vi}})/\tau)}{\sum_{j}^{B} \exp(s_{qv}(\mathbf{e_{tj}}, \mathbf{e_{vi}})/\tau)}, \qquad \mathcal{L}_{Q2V} = -\frac{1}{B} \sum_{i}^{B} \log \frac{\exp(s_{qv}(\mathbf{e_{ti}}, \mathbf{e_{vi}})/\tau)}{\sum_{j}^{B} \exp(s_{qv}(\mathbf{e_{tj}}, \mathbf{e_{vi}})/\tau)}, \qquad \mathcal{L}_{QV} = \frac{1}{2} (\mathcal{L}_{Q2V} + \mathcal{L}_{V2Q}), \qquad \mathcal{L}_{Q$$

Total Loss
$$\mathcal{L} = \mathcal{L}_{QV} + \mathcal{L}_{QC}$$
.

Experiments

Experimental results:

• Comparison to the state-of-the-art methods on text-video retrieval.

Datasets:

- **MSR-VTT**: ~10K video videos, each having 20 captions;
- **DiDeMo**: ~10K videos paired with 40K description;
- **VATEX**: ~35K videos, each with multiple annotations;
- **MSVD**: 1970 videos with 80K captions, with ~40 captions on average per video.

Comparisons with SOTAs

Mathad	Venue	$Text \to Video$						Video $ ightarrow$ Text				
Method		R@1	R@5	R@10	MdR↓	MnR↓	R@1	R@5	R@10	MdR↓	MnR↓	
ClipBERT [19]	CVPR'20	22.0	46.8	59.9	6.0	-	-	-	-	-		
MMT [10]	ECCV'20	26.6	57.1	69.6	4.0	-	27.0	57.5	69.7	3.7	21.3	
T2VLAD [39]	CVPR'21	29.5	59.0	70.1	4.0	-	31.8	60.0	71.1	3.0		
SupportSet [29]	ICLR'21	30.1	58.5	69.3	3.0	-	28.5	58.6	71.6	3.0	-	
Frozen [2]	ICCV'21	32.5	61.5	71.2	3.0	-	-	-	-	-	-	
BridgeFormer [12]	CVPR'22	37.6	64.8	75.1	-	-	-	-	-	-	-	
TMVM [20]	NeurIPS'22	36.2	64.2	75.7	3.0	-	34.8	63.8	73.7	3.0	-	
CLIP-ViT-B/32												
CLIP4Clip [24]	arXiv'21	44.5	71.4	81.6	2.0	15.3	42.7	70.9	80.6	2.0	11.6	
CenterCLIP [48]	SIGIR'22	44.2	71.6	82.1	2.0	15.1	42.8	71.7	82.2	2.0	10.9	
CAMoE [7]	arXiv'21	44.6	72.6	81.8	2.0	13.3	45.1	72.4	83.1	2.0	10.0	
CLIP2Video [9]	arXiv'21	45.6	72.6	81.7	2.0	14.6	43.5	72.3	82.1	2.0	10.2	
X-Pool [13]	CVPR'22	46.9	72.8	82.2	2.0	14.3	-	-	-	-	-	
QB-Norm [4]	CVPR'22	47.2	73.0	83.0	2.0	-	-	-	-	-	-	
TS2-Net [22]	ECCV'22	47.0	74.5	83.8	2.0	13.0	45.3	74.1	83.7	2.0	9.2	
DRL [36]	arXiv'22	47.4	74.6	83.8	2.0	-	45.3	73.9	83.3	2.0	-	
Cap4Video		49.3	74.3	83.8	2.0	12.0	47.1	73.7	84.3	2.0	8.7	
CLIP-ViT-B/16												
CLIP2TV [11]	arXiv'21	48.3	74.6	82.8	2.0	14.9	46.5	75.4	84.9	2.0	10.2	
CenterCLIP [48]	SIGIR'22	48.4	73.8	82.0	2.0	13.8	47.7	75.0	83.3	2.0	10.2	
TS2-Net [22]	ECCV'22	49.4	75.6	85.3	2.0	13.5	46.6	75.9	84.9	2.0	8.9	
DRL [36]	arXiv'22	50.2	76.5	84.7	1.0	-	48.9	76.3	85.4	2.0	-	
Cap4Video		51.4	75.7	83.9	1.0	12.4	49.0	75.2	85.0	2.0	8	

Results on MSR-VTT 1K dataset

Method	R@1	R@5	R@10	MdR	MnR
CE [21]	15.6	40.9	-	8.2	-
ClipBERT [19]	21.1	47.3	61.1	6.3	-
Frozen [2]	31.0	59.8	72.4	3.0	-
TMVM [20]	36.5	64.9	75.4	3.0	-
CLIP4Clip [24]	42.8	68.5	79.2	2.0	18.9
TS2-Net [22]	41.8	71.6	82.0	2.0	14.8
HunYuan [28]	45.0	75.6	83.4	2.0	12.0
DRL [36]	49.0	76.5	84.5	2.0	-
Cap4Video	52.0	79.4	87.5	1	10.5

Results on DiDeMo dataset

Method	R@1	R@5	R@10	MdR	MnR
CE [21]	19.8	49.0	63.8	6.0	-
SUPPORT [29]	28.4	60.0	72.9	4.0	-
CLIP [30]	37.0	64.1	73.8	3.0	-
Frozen [2]	33.7	64.7	76.3	3.0	-
TMVM [20]	36.7	67.4	81.3	2.5	-
CLIP4Clip [24]	45.2	75.5	84.3	2.0	10.3
X-Pool [13]	47.2	77.4	86.0	2.0	9.3
Cap4Video	51.8	80.8	88.3	1	8.3

Results on MSVD dataset

Method	R@1	R@5	R@10	MdR	MnR
HGR [6]	35.1	73.5	83.5	2.0	-
CLIP [30]	39.7	72.3	82.2	2.0	12.8
SUPPORT [29]	44.9	82.1	89.7	1.0	-
CLIP4Clip [24]	55.9	89.2	95.0	1.0	3.9
Clip2Video [9]	57.3	90.0	95.5	1.0	3.6
QB-Norm [4]	58.8	88.3	93.8	1.0	-
TS2-Net [22]	59.1	90.0	95.2	1.0	3.5
Cap4Video	66.6	93.1	97.0	1	2.7

Results on VATEX dataset

Ablation Studies

	Global Matching						Fine-grained Matching			
Method	R@1	R@5	R@10	MdR↓	MnR↓	R@1	R@5	R@10	MdR↓	MnR↓
Baseline	42.8	70.4	79.0	2	16.6	45.7	73.7	82.6	2	13.1
+Different Sources of Caption	as Data	Augmen	tation							
Video Title from Source URL	43.8	71.1	80.9	2	15.1	44.3	72.7	83.5	2	13.1
Zero-shot Video Captioning	44.2	70.7	81.5	2	16.2	46.3	72.5	81.7	2	12.9
+Different Number of Caption	s for Dat	ta Augme	entation							
Top-1	44.2	70.7	81.5	2	16.2	46.3	72.5	81.7	2	12.9
Top-3	43.3	71.7	81.6	2	15.0	45.5	73.8	82.4	2	12.7
Top-5	43.4	70.6	80.4	2	16.2	45.6	72.7	82.7	2	12.9
+Video-Caption Feature Interd	action									
Video Only	44.2	70.7	81.5	2	16.2	46.3	72.5	81.7	2	12.9
Sum	43.8	71.5	80.3	2	16.1	47.2	73.3	82.8	2	13.1
Concat-MLP	37.5	66.1	78.4	3	15.7	40.0	68.7	79.9	2	12.7
Cross Transformer	44.6	71.6	80.3	2	14.6	47.9	75.4	83.0	2	11.5
Co-attention Transformer	45.3	71.2	80.9	2	15.0	48.5	74.0	82.5	2	12.7
+Query-Caption Matching Score										
Query-Video Only	45.3	71.2	80.9	2	15.0	48.5	74.0	82.5	2	12.7
Query-Caption Only	30.3	55.2	67.5	4	26.4	30.3	55.2	67.5	4	26.4
Query-Video + Query-Caption	45.6	71.7	81.2	2	14.8	49.3	74.2	83.4	2	12.1

Component-wise evaluation of our framework on the MSR-VTT 1K validation set.

Visualization

Ouerv7765 · a person is discussing a car

Query/105.	a perso	in is discussing a cal.		ung un	e brown noise which is having	, 1 u 11.	
Video	Rank	+ Caption	Rank	Video	Rank	+ Caption	Rank
	6	video of a car camera recording the driver's voice.	1		2	video of the horse jumping ov a fence at Ranch in Nevada was captured on camera.	
	4	video showing the car in a parking spot.	2	Fiel (7)	1	video showing animation of a horse's simulation, which simulates the game.	
	5	video of SUV in the video below shows a salesman talking to an audience.	3		4	video showing a horse simulation video game in whi you could see your avatar being animated by the camer	

Query9616 : person is recording the brown horse which is having fund

The text-video results on the MSR-VTT 1K-A test set. Left: The ranking results of the queryvideo matching model. **Right**: The ranking results of Cap4Video, which incorporates generated captions to enhance retrieval.

Conclusion

- We explore a novel problem: leveraging auxiliary captions to further enhance existing text-video retrieval.
- We propose the **Cap4Video**, which maximizes the utility of the auxiliary captions through **three** aspects: 1) Input data augmentation for training, 2) Intermediate video-caption feature interaction for compact video representations, and 3) Output score fusion for improved text-video retrieval.
- Our Cap4Video improves the performance of existing query-video matching mechanisms, including global matching and fine-grained matching. It has achieved state-of-the-art performance across four standard text-video retrieval benchmarks.

THANKS

Codes & Models https://github.com/whwu95/Cap4Video

Contact
Wenhao Wu
Email: <u>whwu.ucas@gmail.com</u>
Homepage:
https://whwu95.github.io