

NeuFace: Realistic 3D Neural Face Rendering from Multi-view Images

Mingwu Zheng Haiyu

Haiyu Zhang

Hongyu Yang

Di Huang

Beihang University, China

Rendered

Geometry

Diffuse

Specular

Relighting

Face Geometry & Appearance Capture

Active: OLAT/Multi-phased Light

NVIDIA. Realistic Digital Human Rendering with Omniverse RTX Renderer. SIGGRAPH 2021 Session. Jérémy Riviere, et.al. Single-Shot High-Quality Facial Geometry and Skin Appearance Capture. TOG 2020. Paulo Gotardo, et.al. Practical Dynamic Facial Appearance Modeling and Acquisition. TOG 2018.

Passive: Polarized Camera

Passive: Dynamic Blood Flow Input

Face Geometry & Appearance Capture

DATA ACQUISITION

- ~8400 images with timemultiplexed, multi-phased polarized and constant illuminations
- ~180GB of data

RADIOMETRIC CALIBRATION

- Recovering sensor response
 curve
- Calibrating color by capturing color chart with multiple illuminations

MULTI-VIEW RECONSTRUCTION

- Correspondence finding, depth fusion and surface reconstruction
- Mesh parameterization and texture projection

MATERIAL ESTIMATION

- Light estimation
- Decomposing reflectance by polarized images (or dynamic images)

> An elaborately designed workflow:

- Depending on the expertise of the engineers with significant manual efforts;
- The multi-step process inevitably brings diverse optimization goals.

NVIDIA. Realistic Digital Human Rendering with Omniverse RTX Renderer. SIGGRAPH 2021 Session.

Our Goal

> Recovering facial geometry and appearance from multi-view images:

- Uncalibrated, unpolarized multi-view RGB images (~40)
- Unknow illumination (but nearly white)

> High-quality results with a simple and complete end-to-end workflow.

Challenges

Complicated Material

The multi-layered facial skin leads to complex view dependent and spatially-varying highlights.

Image courtesy of A.D.A.M.

Challenges

Complicated Material

- The multi-layered facial skin leads to complex view dependent and spatially-varying highlights.
- > The exploited physical priors are incapable of describing human face >:
 - Physical priors: Phong¹, Torrance and Sparrow^{*}, and Disney BRDF model²

¹Ref-NeRF (CVPR 2022)

Mesh $/k_d/k_{
m orm}/n$

Extracted probe

²DIFFREC (CVPR 2022)

Image courtesy of A.D.A.M.

Jacob Munkberg, et.al. Extracting triangular 3D models, materials, and lighting from images. CVPR 2022. Dor Verbin, et.al. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR 2022.

Challenges

Complicated Material

- The multi-layered facial skin leads to complex view dependent and spatially-varying highlights.
- > The exploited physical priors are incapable of describing human face -:
 - Physical priors: Phong¹, Torrance and Sparrow*, and Disney BRDF model²
- Solving the rendering equation is computationally-expensives:
 - Monte Carlo sampling is typically required.

Image courtesy of A.D.A.M.

NeuFace Overview

$$L_o(x,\omega_o) = \int_{\Omega} f_{\mathrm{d}}(x,\omega_i,\omega_o) L_i(x,\omega_i)(\omega_i \cdot \mathbf{n}) \mathrm{d}\omega_i + \rho \int_{\Omega} f_{\mathrm{s}}(x,\omega_i,\omega_o) L_i(x,\omega_i)(\omega_i \cdot \mathbf{n}) \mathrm{d}\omega_i$$

NeuFace Overview

$$L_{o}(x,\omega_{o}) = \frac{\alpha(x)}{\pi} \sum_{l=0}^{l} \sum_{m=-l}^{l} \Lambda_{lm} c_{lm} Y_{lm}(\mathbf{n}) + \varrho \cdot c(x) \cdot B(\omega_{o},\mathbf{n}) \sum_{l=0}^{l} \sum_{m=-l}^{l} e^{-\frac{l(l+1)\rho}{2}} c_{lm}(x,\omega_{o}) Y_{lm}(\omega_{r})$$

Method

> A novel physically-based neural rendering framework.

$$Specular intensity \varrho$$

$$L_{o}(x, \omega_{o}) = \int_{\Omega} f_{d}(x, \omega_{i}, \omega_{o}) L_{i}(x, \omega_{i})(\omega_{i} \cdot \mathbf{n}) d\omega_{i} + \varrho \int_{\Omega} f_{s}(x, \omega_{i}, \omega_{o}) L_{i}(x, \omega_{i})(\omega_{i} \cdot \mathbf{n}) d\omega_{i}$$

$$\uparrow$$
Diffuse term L_{d}

$$Specular term L_{s}$$

Step 1. Split Integral

Specular intensity
$$\varrho$$

 $L_o(x, \omega_o) = \int_{\Omega} f_d(x, \omega_i, \omega_o) L_i(x, \omega_i)(\omega_i \cdot \mathbf{n}) d\omega_i + \varrho \int_{\Omega} f_s(x, \omega_i, \omega_o) L_i(x, \omega_i)(\omega_i \cdot \mathbf{n}) d\omega_i$
Diffuse term L_d
 $\int_{\Omega} f_s(x, \omega_i, \omega_o) L_i(x, \omega_i)(\omega_i \cdot \mathbf{n}) d\omega_i$
 $= \int_{\Omega} f_s(x, \omega_i, \omega_o)(\omega_i \cdot \mathbf{n}) d\omega_i$
 $Material integral$
Split-sum approximation (from Unreal Engine)

Step 2. Material Integral

A similar specular structure should be low-rank

Step 2. Material Integral

$$\int_{\Omega} f_{s}(x, \omega_{i}, \omega_{o}) L_{i}(x, \omega_{i})(\omega_{i} \cdot \mathbf{n}) d\omega_{i}$$

$$= \int_{\Omega} f_{s}(x, \omega_{i}, \omega_{o})(\omega_{i} \cdot \mathbf{n}) d\omega_{i} \int_{\Omega} D(h) L_{i}(x, \omega_{i}) d\omega_{i}$$
Material integral Light integral
$$= \mathbf{c}(x) \cdot \mathbf{B}(\omega_{i}, \omega_{o}, \mathbf{n}) \int_{\Omega} D(h) L_{i}(x, \omega_{i}) d\omega_{i}$$

n

Low-rank BRDF (rank 3)

A similar specular structure should be low-rank

Step 3. Light Integral

Step 4. Diffuse Modeling

$$= \frac{\alpha(x)}{\pi} \int_{\Omega} \sum_{l=0}^{l} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\omega_i) (\omega_i \cdot \mathbf{n}) d\omega_i$$
$$= \frac{\alpha(x)}{\pi} \sum_{l=0}^{l} \sum_{m=-l}^{l} c_{lm} \int_{\Omega} Y_{lm}(\omega_i) (\omega_i \cdot \mathbf{n}) d\omega$$
$$= \frac{\alpha(x)}{\pi} \sum_{l=0}^{l} \sum_{m=-l}^{l} \Lambda_{lm} c_{lm} Y_{lm}(\mathbf{n})$$

$$\Lambda_{lm} = \begin{cases} \frac{2\pi}{3}, l = 1\\ \frac{(-1)^{\frac{l}{2}+1}\pi}{2^{l-1}(l-1)(l+2)} \binom{l}{l/2}, l \text{ is even} \\ 0, l \text{ is odd} \end{cases}$$

Analytical solution of the diffuse term using the Funk-Hecke theorem

Step 4. Diffuse Modeling

Comparison with Other Neural Rendering Methods

Comparison with Other Neural Rendering Methods

20

Ablation Study

Cmap, Disney BRDF

Cmap, Neural Basis

SH, Neural Basis (Ours)

Novel View

Specular

Diffuse

Geometry

Relighting

Extension to Common Objects

Extension to Common Objects

23

Code and video are available at https://github.com/aejion/NeuFace.

Thank you !

Mingwu Zheng

Haiyu Zhang

Hongyu Yang

Di Huang