

PROTOCON: Pseudo-label Refinement via Online Clustering and Prototypical Consistency for Efficient Semi-supervised Learning

Paper ID: WED-AM-325

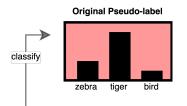
Islam Nassar

Munawar Hayat

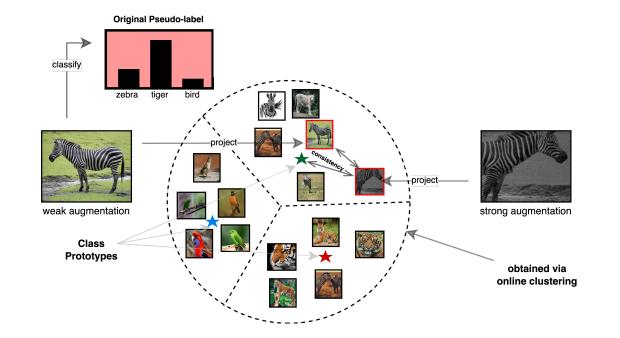
Ehsan Abbasnejad

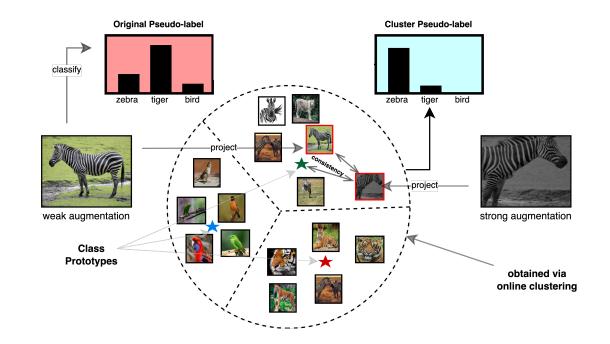
Hamid Rezatofighi

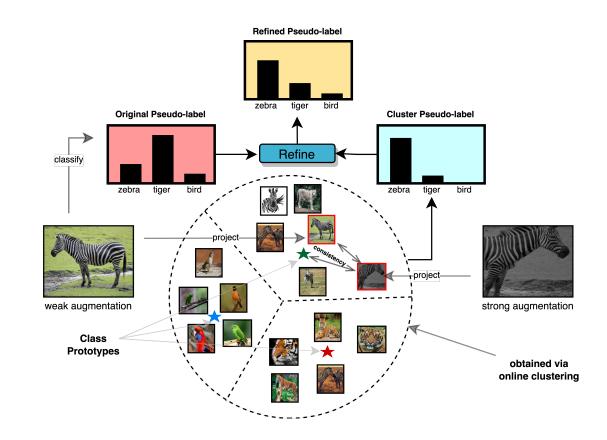
Reza Haffari

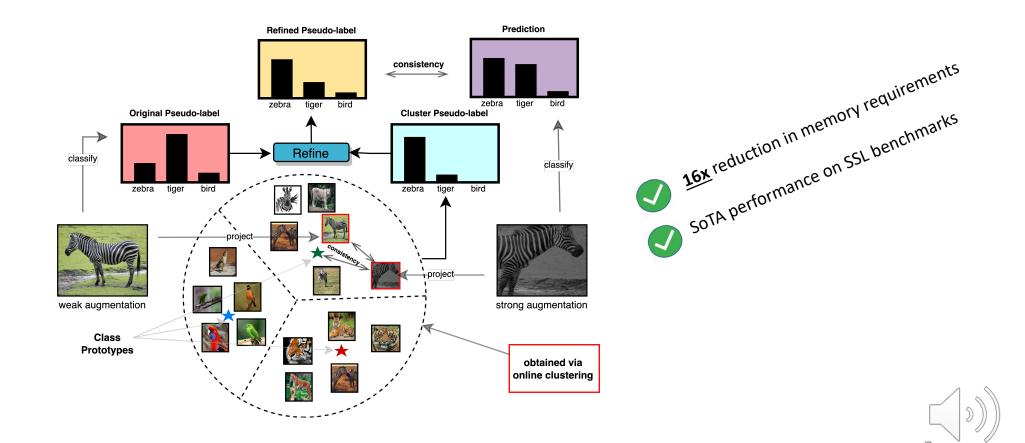


weak augmentation unlabeled image







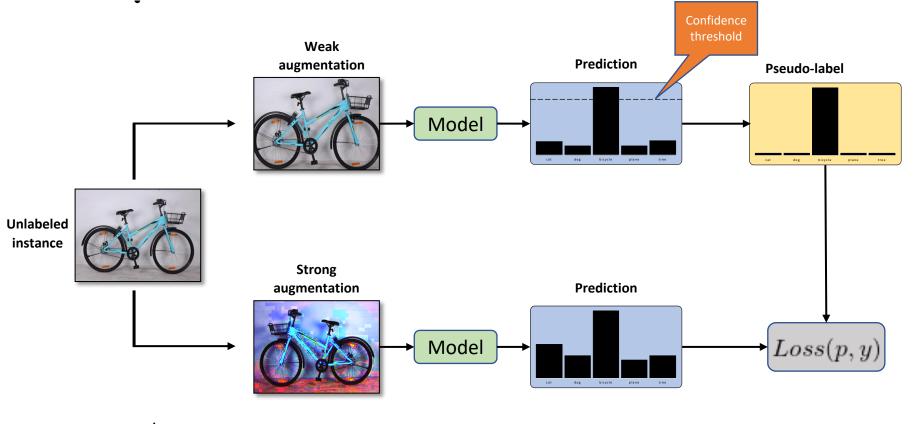


Now in More Details

Background : Confidence-based Pseudo-labeling with consistency regularization

• FixMatch for semi-supervised learning [1]

2 1) Obtain pseudo-labels based on weak augmentation

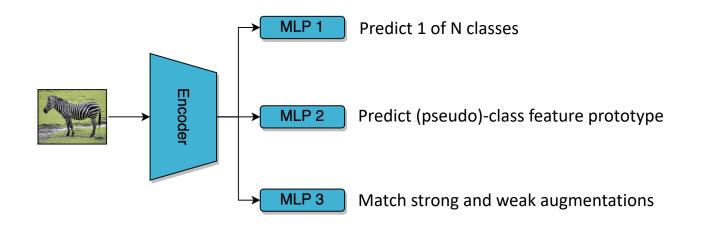


 $-\dot{\underline{O}}$ 2) Enforce pseudo-label consistency for strong augmentation.

PROTOCON: Refining pseudo-labels via multiple learning tasks

How to effectively combine different learning objectives (tasks) to improve pseudo-label quality

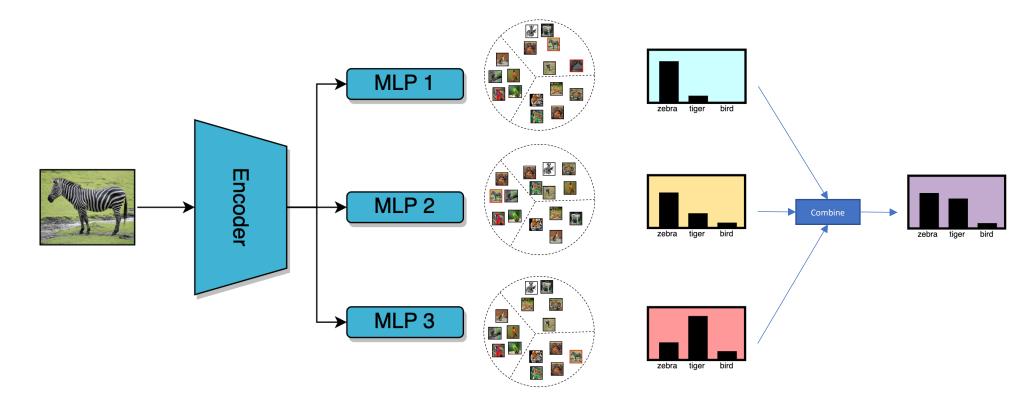
Multiple projector networks with a shared backbone where each network implements a specific learning objective



Each representation space learns a different, yet relevant, mapping/view of the data

Refining pseudo-labels via multiple learning tasks

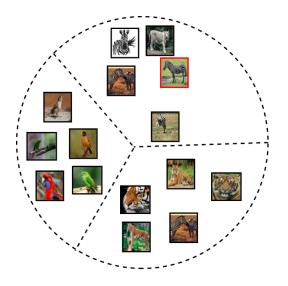
A sample's neighbourhood differs from one representation space to another



We can obtain a pseudo-label for each image in each space as a weighted average of its N-nearest neighbours'

Then our final pseudo-label (used to train the network) is a combination of all the different pseudo-labels

How to identify the N-nearest neighbours in a scalable memory-efficient manner as we train



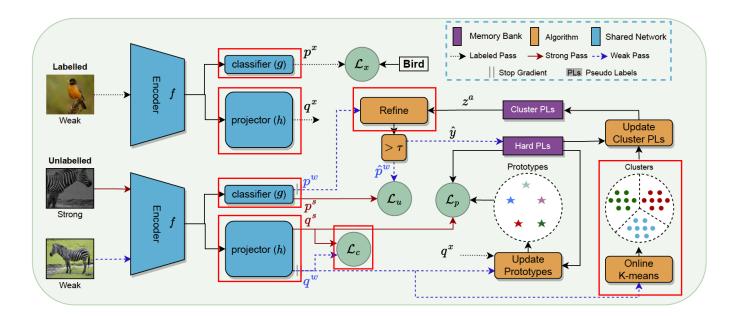
Offline clustering is slow and memory intensive

Solution

Online constrained K-means clustering

Online: K-means centroids are updated each mini-batch as training proceeds

Constrained: To ensure each sample has N samples in its cluster



Achieves **<u>16x</u>** reduction in memory requirements compared to offline methods

State-of-the-art on SSL benchmarks for Image classification in label-scarce regime (2-10 images/class)

• SoTA performance on SSL image classification benchmarks

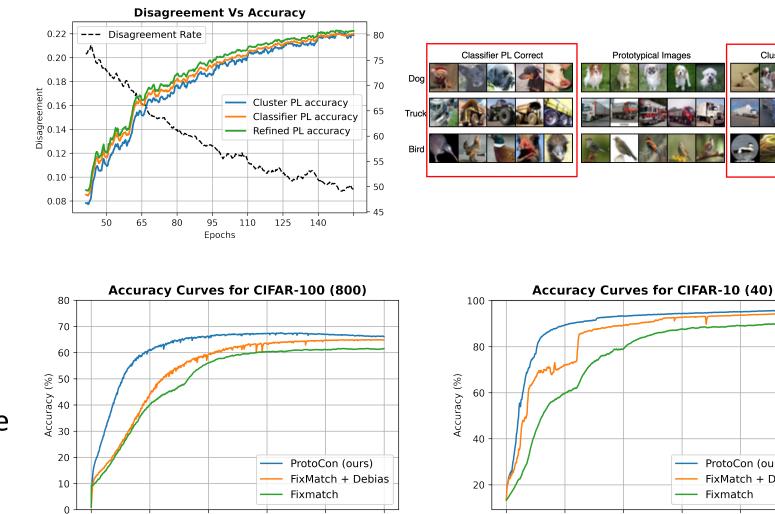
	CIFAR-10			CIFAR-100			Mini-ImageNet	
Total labeled samples	20	40	80	200	400	800	400	1000
FixMatch [38]	82.32±9.77	86.29±4.50	$92.06 {\pm} 0.88$	35.37±5.68	51.15±1.75	$61.32 {\pm} 0.92$	$17.18 {\pm} 6.22$	39.03±3.99
FixMatch + DA [3, 38]	$83.84{\pm}8.35$	$86.98 {\pm} 3.40$	$92.29 {\pm} 0.86$	$41.28 {\pm} 6.03$	$52.65 {\pm} 2.32$	62. 12±0.79	$19.40 {\pm} 5.87$	$40.92 {\pm} 4.71$
CoMatch [22]	$87.37 {\pm} 8.47$	$93.09 {\pm} 1.39$	$93.97 {\pm} 0.62$	$47.92 {\pm} 4.83$	58.17 ± 3.52	66.15±0.71	$21.29{\pm}6.19$	$40.98 {\pm} 3.52$
SimMatch [48]	89.31±7.73	94.51±2.56	$94.89{\pm}1.32$	46.01 ± 6.12	$57.95 {\pm} 2.37$	$65.50 {\pm} 0.93$	25.75 ± 5.90	39.76 ± 3.77
FixMatch + DB [42]	$89.02{\pm}6.37$	$94.60\pm\!\!1.31$	$95.60\pm\!0.12$	$46.36 {\pm} 5.05$	$57.88{\pm}3.34$	$64.84{\pm}0.85$	$27.37 {\pm} 7.01$	41.05 ± 3.34
ProtoCon	90.51±4.02	95.20±1.8	96.11±0.20	48.25±4.87	59.53±2.94	65.91±0.57	29.15±6.98	45.83±4.15
delta against best baseline	+1.20	+0.60	+0.51	+0.33	+1.36	-0.24	+1.78	+4.78

• Strong performance on ImageNet

Method	Pre.	Epochs	0.2%	1%	10%
Supervised	X	300	-	25.4	56.4
Representation learning methods:					
SwAV [8]	1	800	_	53.9	70.2
SimCLRv2++ [12]	1	1200	-	60.0	70.5
DINO [9]	1	300	-	55.1	67.8
PAWS++ [2]	1	300	-	66.5	75.5
PL & consistency methods:					
MPL [31]	×	800	_	65.3^\dagger	73.9
CoMatch [22]	X	400	44.3^\dagger	66.0	73.6
FixMatch [38]	×	300	-	51.2	71.5
FMatch + DA [3, 38]	×	300	41.1^{\dagger}	53.4	71.5^{\dagger}
FMatch + EMAN [7]	1	850	43.6	60.9	72.6
FMatch + DB [42]	×	300	45.8^{\dagger}	63.0^{\dagger}	71.7^{\dagger}
FMatch + DB + EMAN [42]	1	850	47.9	63.1	72.8^{\dagger}
PROTOCON	X	300	47.8	65.6	73.1
PROTOCON + EMAN [7]	1	850	50.1	67.2	73.5
delta against best baseline			+2.2	+0.7	-2.0

• Cross-domain superiority

	Clipart				Sketch			
Total labeled samples	690	1380	2760	690	1380	2760		
FixMatch [38]	30.21	41.21	51.29	12.73	21.65	33.07		
CoMatch [22]	35.49	48.62	54.98	24.30	33.71	41.02		
FixMatch + DB [42]	38.97	51.44	58.31	25.34	35.58	43.98		
ProtoCon	43.72	55.66	61.32	33.94	43.51	50.88		
delta	+4.75	+4.22	+3.01	+8.60	+7.93	+6.90		



Epochs

Cluster PL Correct

ProtoCon (ours)

Fixmatch

Epochs

FixMatch + Debias

• Improved convergence

Thank you for listening

PROTOCON: Pseudo-label Refinement via Online Clustering and Prototypical Consistency for Efficient Semi-supervised Learning

