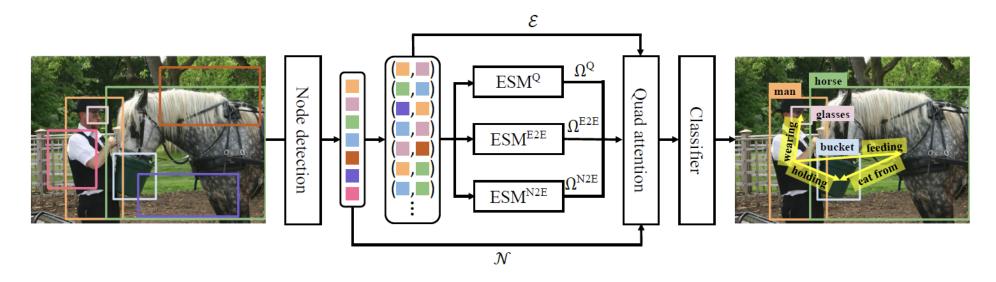


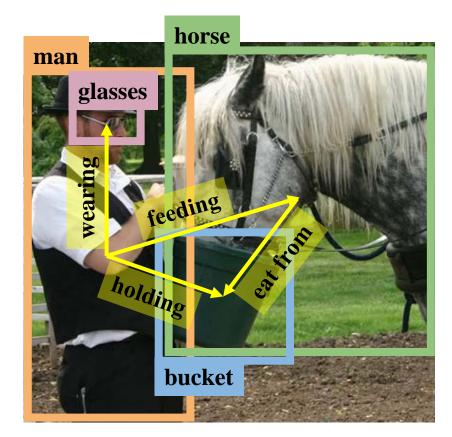
POSTER ID THU-AM-209

Devil's on the Edges:

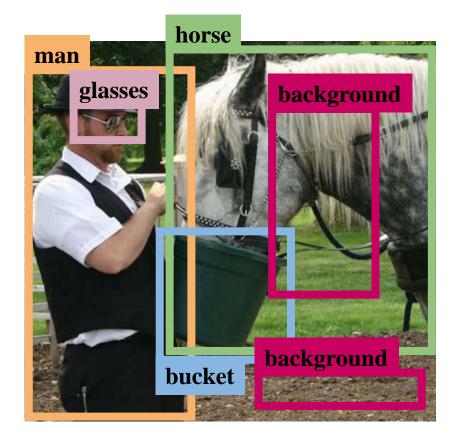
Selective Quad Attention for Scene Graph Generation

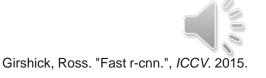

Deunsol Jung Sanghyun Kim Won Hwa Kim Minsu Cho

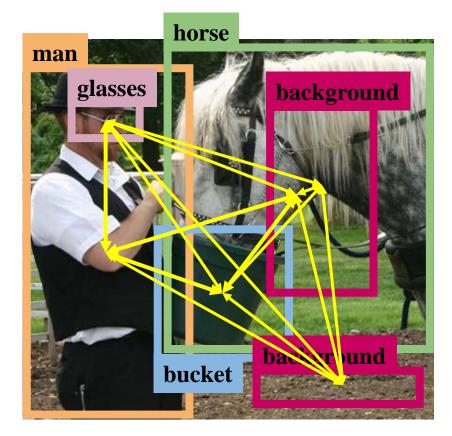
Pohang University of Science and Technology (POSTECH)


Selective Quad Attention Networks

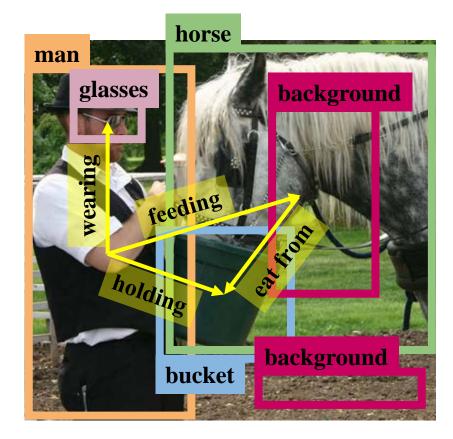
- ✓ <u>Edge selection module</u>: selecting relevant edges for contextual reasoning.
- ✓ <u>Quad attention module</u>: updating node and edge features via diverse interactions.
- ✓ Selective Quad Attention Networks (SQUAT)
 - Edge selection module + Quad attention module = achieving state-of-the-art



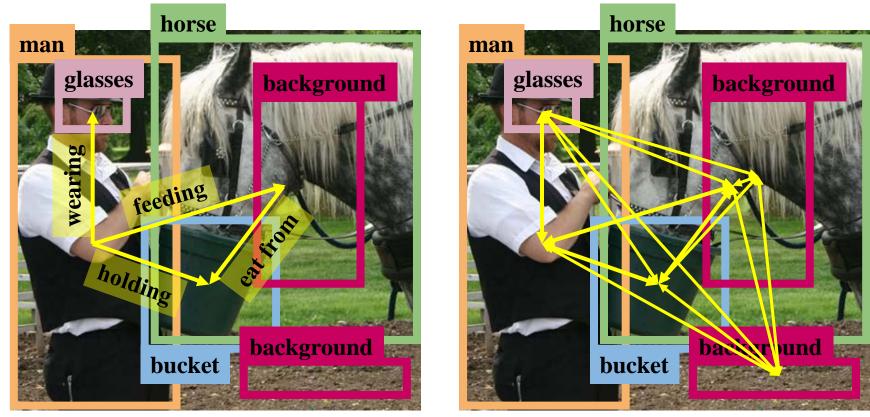

Predicting the objects ${\mathcal O}$ and their semantic relationships ${\mathcal R}$ given an image.



1. Using a pre-trained object detector [1], extract the object bounding boxes and labels.

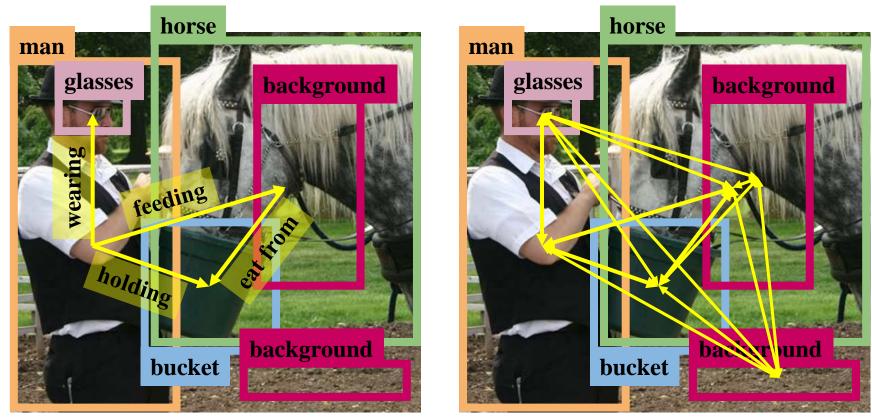


2. Node and edge features are updated by contextual reasoning through fully-connected graph.


3. The relationships between objects are classified based on the updated edge features.

Limitation of existing methods

The contextual reasoning is largely distracted by irrelevant objects and their relationship pairs.


(a) ground-truth scene graph

(b) fully-connected initial graph

Limitation of existing methods

Node-to-node or node-to-edge interactions are limited in capturing such relations between edges.

(a) ground-truth scene graph

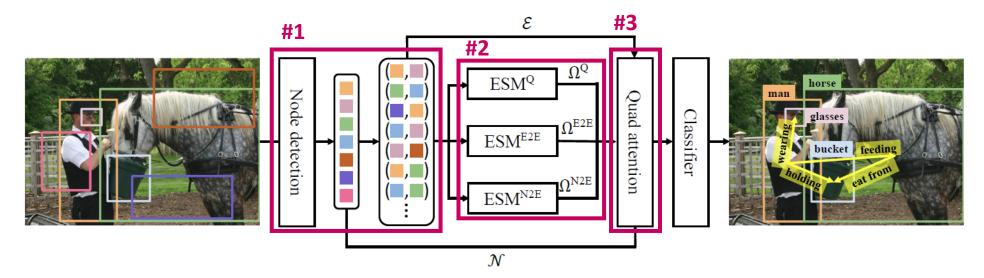
(b) fully-connected initial graph

Limitation of existing methods

The contextual reasoning is largely distracted by irrelevant objects and their relationship pairs.

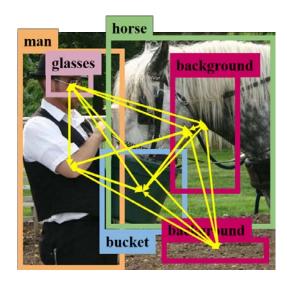
→ Edge selection module

selecting relevant edges for contextual reasoning.


Note-to-node or node-to-edge interactions are limited in capturing such relations between edges.

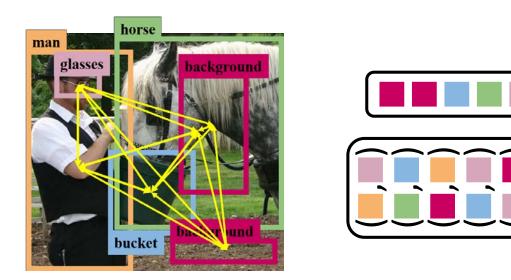
→ Quad attention module

updating node and edge features via diverse interactions.


Selective Quad Attention Network

- 1. Node detection for object candidates
- 2. Edge selection for relevant object pairs
- 3. Quad attention for contextual reasoning

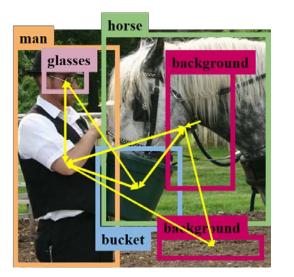
Node detection module

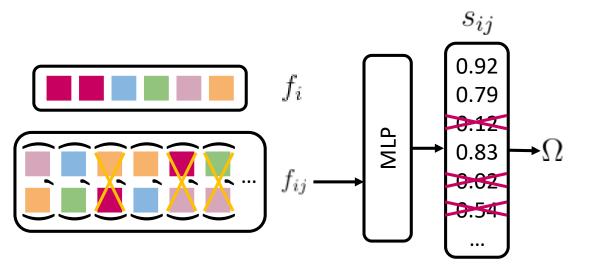

- 1. Node detection for object candidates
 - Using pre-trained object detectors, extract a set of object bounding boxes.
 - Construct a initial node and edge features of fully-connected graph.

Node detection module

 f_i

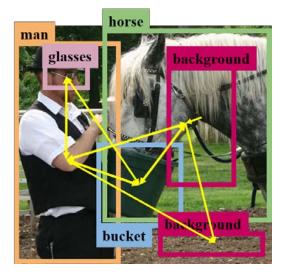
 f_{ij}

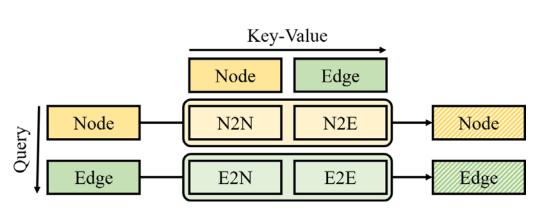



- 1. Node detection for object candidates
 - Using pre-trained object detectors, extract a set of object bounding boxes.
 - Construct a initial node and edge features of fully-connected graph.

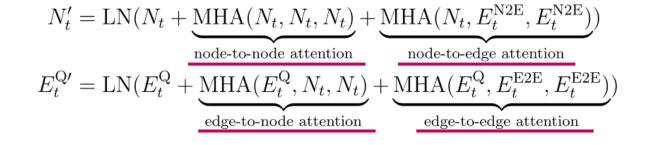
 $f_i = W_o[W_v v_i; W_g b_i] \qquad \qquad f_{ij} = W_p[f_i; f_j]$

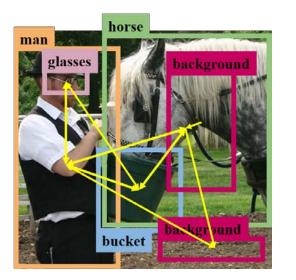
Edge selection module

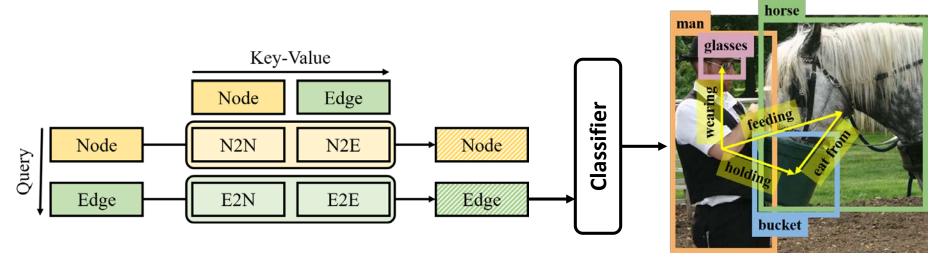




- 2. Edge selection for relevant object pairs
 - Predicts a relatedness score for the edges with a simple MLP.
 - Choose the edges with top-ho% highest relatedness scores.


Quad attention module


- 3. Quad attention for contextual reasoning
 - Update the node and selected edge features via four types of attention:


node-to-node(N2N), node-to-edge(N2E), edge-to-node(E2N), and edge-to-edge(E2E)

Quad attention module

- 3. Quad attention for contextual reasoning
 - Update the node and selected edge features via four types of attention.
 - Produce sets of predicate probabilities using the output edge features.

Datasets: Visual Genome

- The most popular dataset which is composed of 108k images with 150 object classes and 50 predicate classes.
- Tasks
 - Predicate Classification (PredCls): to predict the relationships given the G.T. bounding boxes and object labels.
 - Scene Graph Classification (SGCls): to predict the object labels and the relationships given the G.T. bounding boxes only.
 - Scene Graph Detection (SGDet): to predict the object bounding boxes, object labels, and the relationships.
- Evaluation Metrics
 - R@K: measure the fraction of G.T. relationship triplets that appear among the top most K confident predicates.
 - mR@K: retrieves each predicate separately and then averages R@K for all predicates.

Experiments

Mathada	PredCls		SGCls		SGDet	
Methods	mR@50	mR@100	mR@50	mR@100	mR@50	mR@100
IMP+ [‡] (Xu et al., 2017)	11.0	11.8	6.2	6.5	4.2	5.3
Motifs [‡] (Zellers <i>et al.</i> , 2018)	14.6	15.8	8.0	8.5	5.5	6.8
RelDN (Zhang et al., 2019)	15.8	17.2	9.3	9.6	6.0	7.3
VCTree [‡] (Tang et al., 2019)	15.4	16.6	7.5	8.0	6.6	7.7
MSDN (Li et al., 2017)	15.9	17.5	9.3	9.7	6.1	7.2
GPS-Net (Lin et al., 2020)	15.2	16.6	8.5	9.1	6.7	8.6
RU-Net (Lin et al., 2022)	-	24.2	-	14.6	-	10.8
HL-Net (Lin et al., 2022)	-	22.8	-	13.5	-	9.2
VCTree-TDE (Tang et al., 2020)	25.4	28.7	12.2	14.0	9.3	11.1
Seq2Seq (Lu et al., 2021)	QC 1	20.5	147	16.0	0 6	101
GPS-Net [†] (Lin <i>et al.</i> , 2020)	For mR@100,					
MSGG (Xu <i>et al.</i> , 2021)						\uparrow
BGNN [†] (Li <i>et al.</i> , 2021)	30.4	32.9	14.3	16.5	10.7	12.6
SQUAT [†] (Ours)	30.9	33.4	17.5	18.8	14.1	16.5

Li, R., Zhang, S., Wan, B., & He, X. Bipartite graph network with adaptive message passing for unbiased scene graph generation. CVPR 2021.

Experiments

• Divide Visual Genome according to the number of objects in the scene: simple (≤ 9), moderate (10~16), and complex (≥ 17)

model	simple	moderate	complex	mR@100
BGNN SQUAT	15.52 19.54	12.71 16.80	9.87 13.28	12.46 16.47
Gain (%)	25.90	32.18	34.55	32.18

Ablation study on Edge Selection

	Variants			SGDet	
Q	E2E	N2E	mR@20	mR@50	mR@100
BGNN	N (Li <i>et al</i>	., 2021)	7.49	10.31	12.46
			9.12	12.45	15.00
\checkmark			9.92	13.22	15.66
	\checkmark	\checkmark	9.84	13.04	15.60
\checkmark	\checkmark	\checkmark	10.57	14.12	16.47

Li, R., Zhang, S., Wan, B., & He, X. Bipartite graph network with adaptive message passing for unbiased scene graph generation. CVPR 2021.

Ablation study on Quad attention

	Met	thod			SGDet	
N2N	N2E	E2N	E2E	mR@20	mR@50	mR@100
\checkmark	\checkmark			7.02	9.74	11.57
\checkmark	\checkmark		\checkmark	9.76	12.98	15.30
\checkmark	\checkmark	\checkmark		9.70	12.27	15.03
		\checkmark	\checkmark	9.90	13.05	15.28
	\checkmark	\checkmark	\checkmark	9.77	12.93	15.42
\checkmark		\checkmark	\checkmark	9.99	13.02	15.54
\checkmark	\checkmark	\checkmark	\checkmark	10.57	14.12	16.47

Ablation study on message passing

model	Graph	mR@20	SGDet mR@50	mR@100
IMP	No	4.09	5.56	6.53
	Full	2.87	4.24	5.42
BGNN	No	8.99	11.84	13.56
	Full	7.49	10.31	12.46
	ES	9.00	11.86	14.20
	GT	14.15	16.41	17.09
SQUAT	No	8.68	11.52	13.99
	Full	9.12	12.45	15.00
	ES	10.57	14.12	16.47
	GT	17.95	19.21	19.51

Xu, D., Zhu, Y., Choy, C. B., & Fei-Fei, L., Scene graph generation by iterative message passing. CVPR 2017.

Li, R., Zhang, S., Wan, B., & He, X., Bipartite graph network with adaptive message passing for unbiased scene graph generation. CVPR 2021.

Thank you

Takeaways

- ✓ <u>Edge selection module</u>: selecting relevant edges for contextual reasoning.
- ✓ <u>Quad attention module</u>: updating node and edge features via diverse interactions.
- ✓ Selective Quad Attention Networks (SQUAT)

Visit us @ CVPR'23

- ➢ Paper id #4074
- ≻ THU-AM-209
- ➤ 22nd June, 209

