

Leapfrog Diffusion Model for Stochastic Trajectory Prediction

Weibo Mao¹, Chenxin Xu¹, Qi Zhu¹, Siheng Chen^{1,2}, Yanfeng Wang^{2,1}

¹Shanghai Jiao Tong University, ²Shanghai AI Laboratory

Poster: TUE-PM-132

Paper: https://arxiv.org/abs/2303.10895

Overview

This work focuses on **accelerating** diffusion models for stochastic trajectory prediction.

- We propose a novel LEapfrog Diffusion model (LED), which is a denoising-diffusion-based model.
- We design a trainable leapfrog initializer to directly model complex denoised distributions, accelerating inference speed.
- Our method achieves SOTA performance on four datasets while speeds up the inference by around 20 times compared to the standard diffusion model, satisfying real-time prediction needs.

• Stochastic Trajectory Prediction

Given the past trajectories, predict the possible future trajectories.

• Stochastic Trajectory Prediction

Given the past trajectories, predict the possible future trajectories.

indeterminacy of human behaviors

multi-modal distribution

- Deep Generative Models for Stochastic Trajectory Prediction
 - VAE, GAN, Normalizing Flow, Diffusion Model

	Quality	Diversity	Fast	Related Works
VAE				PECNet, Trajectron++, GroupNet
Normalizing Flow		\checkmark	\checkmark	CF-VAE
GAN				Social-GAN, NMMP
Diffusion Model		\checkmark		MID

- Deep Generative Models for Stochastic Trajectory Prediction
 - VAE, GAN, Normalizing Flow, Diffusion Model

	Quality	Diversity	Fast	Related Works
VAE				PECNet, Trajectron++, GroupNet
Normalizing Flow				CF-VAE
GAN				Social-GAN, NMMP
Diffusion Model				MID
			Ours	

• Diffusion Process

- $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

$\mathbf{Y}^0 = \mathbf{Y},$	(2a)
$\mathbf{Y}^{\gamma} = f_{\text{diffuse}}(\mathbf{Y}^{\gamma-1}), \ \gamma = 1, \cdots, \Gamma,$	(2b)

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.

• Diffusion Process

- $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

$$\mathbf{Y}^{0} = \mathbf{Y},$$
(2a)
$$\mathbf{Y}^{\gamma} = f_{\text{diffuse}}(\mathbf{Y}^{\gamma-1}), \ \gamma = 1, \cdots, \Gamma,$$
(2b)

(2a) initializes the diffused trajectory using the GT future trajectory

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.

• Diffusion Process

Note:

- I) No trainable parameters yet!
- 2) Fixed noise schedule.

- $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

$$\mathbf{Y}^{0} = \mathbf{Y},$$
(2a)
$$\mathbf{Y}^{\gamma} = f_{\text{diffuse}}(\mathbf{Y}^{\gamma-1}), \ \gamma = 1, \cdots, \Gamma,$$
(2b)

(2b) uses a forward diffusion operation $f_{diffuse}(\cdot)$ to successively add noises to $\mathbf{Y}^{\gamma-1}$ and obtain the diffused trajectory \mathbf{Y}^{γ}

Basic idea: intentionally add a series of noises to a ground-truth future trajectory.

• Denoising Process

- $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

 $\widehat{\mathbf{Y}}_{k}^{\Gamma} \stackrel{i.i.d}{\sim} \mathcal{P}(\widehat{\mathbf{Y}}^{\Gamma}) = \mathcal{N}(\widehat{\mathbf{Y}}^{\Gamma}; \mathbf{0}, \mathbf{I}), \text{sample } K \text{ times, } (2c)$ $\widehat{\mathbf{Y}}_{k}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{k}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}), \ \gamma = \Gamma - 1, \cdots, 0,$ (2d)

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.

• Denoising Process

- $\mathbf{X}, \mathbb{X}_{\mathcal{N}}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

 $\widehat{\mathbf{Y}}_{k}^{\Gamma} \stackrel{i.i.d}{\sim} \mathcal{P}(\widehat{\mathbf{Y}}^{\Gamma}) = \mathcal{N}(\widehat{\mathbf{Y}}^{\Gamma}; \mathbf{0}, \mathbf{I}), \text{sample } K \text{ times, } (2c)$ $\widehat{\mathbf{Y}}_{k}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{k}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}), \ \gamma = \Gamma - 1, \cdots, 0, \qquad (2d)$

(2c) draws K independent and identicallydistributed samples to initialize denoisedtrajectories from a normal distribution.

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.

• Denoising Process

- $\mathbf{X}, \mathbb{X}_{\mathcal{N}}$ Past trajectory of the ego/neighboring agent.
- Y Future trajectory of the ego agent.

 $\widehat{\mathbf{Y}}_{k}^{\Gamma} \stackrel{i.i.d}{\sim} \mathcal{P}(\widehat{\mathbf{Y}}^{\Gamma}) = \mathcal{N}(\widehat{\mathbf{Y}}^{\Gamma}; \mathbf{0}, \mathbf{I}), \text{ sample } K \text{ times, } (2c)$ $\widehat{\mathbf{Y}}_{k}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{k}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}), \ \gamma = \Gamma - 1, \cdots, 0, \quad (2d)$

(2d) iteratively applies a denoising operation $f_{\rm denoise}(\cdot)$ to obtain the denoised trajectory conditioned on past trajectories.

Basic idea: recover the future trajectory from noise inputs conditioned on past trajectories.

Methodology – Leapfrog Diffusion Model (LED)

Motivation: LED uses the leapfrog initializer to directly estimate the denoised distribution and substitute a long sequence of traditional denoising steps.

Methodology – LED

- Mathematically,
 - $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
 - Y Future trajectory of the ego agent.

$\mathbf{Y}^0 = \mathbf{Y},$	(3a)
$\mathbf{Y}^{\gamma} = f_{\text{diffuse}}(\mathbf{Y}^{\gamma-1}), \ \gamma = 1, \cdots, \Gamma,$	(3b)
$\widehat{\mathcal{Y}}^{ au} \stackrel{K}{\sim} \mathcal{P}(\widehat{\mathbf{Y}}^{ au}) = f_{\mathrm{LSG}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}),$	(3c)
$\widehat{\mathbf{Y}}_{k}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{k}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}), \ \gamma = \tau - 1, \cdots, 0.$	(3d)

Share the same diffusion process as diffusion models to preserve a promising representation ability;

Methodology – LED

- Mathematically,
 - $\mathbf{X}, \mathbb{X}_\mathcal{N}$ Past trajectory of the ego/neighboring agent.
 - Y Future trajectory of the ego agent.

$$\mathbf{Y}^0 = \mathbf{Y},\tag{3a}$$

$$\mathbf{Y}^{\gamma} = f_{\text{diffuse}}(\mathbf{Y}^{\gamma-1}), \ \gamma = 1, \cdots, \Gamma,$$
(3b)

$$\widehat{\mathcal{Y}}^{\tau} \stackrel{K}{\sim} \mathcal{P}(\widehat{\mathbf{Y}}^{\tau}) = f_{\text{LSG}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}), \qquad (3c)$$
$$\widehat{\mathbf{Y}}_{k}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{k}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}), \ \gamma = \tau - 1, \cdots, 0. \quad (3d)$$

(3c) proposes a novel leapfrog initializer $f_{LSG}(\cdot)$ to directly model the τ -th denoised distribution $\mathcal{P}(\widehat{\mathbf{Y}}^{\tau})$;

Denoising process with τ -steps!

To ease the learning burden of the model, we disassemble the distribution $\mathcal{P}(\widehat{\mathbf{Y}}^{\tau})$ into three representative parts: the mean, global variance and sample prediction.

$$\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2},$$

$$\sigma_{\theta} = f_{\sigma}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R},$$

$$\widehat{\mathbb{S}}_{\theta} = [\widehat{\mathbf{S}}_{\theta, 1}, \cdots, \widehat{\mathbf{S}}_{\theta, K}] = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2 \times K},$$

$$\widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta, k} \in \mathbb{R}^{T_{\mathrm{f}} \times 2},$$
(4)

🕶 Past trajectory 🔸 Mean estimation 井 Our prediction 🛛 😁 Ground-truth

 $\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad \text{Mean estimation: infer the mean trajectory as a} \\ \sigma_{\theta} = f_{\sigma}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}, \qquad \text{backbone of prediction.} \\ \widehat{\mathbb{S}}_{\theta} = [\widehat{\mathbf{S}}_{\theta,1}, \cdots, \widehat{\mathbf{S}}_{\theta,K}] = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2 \times K}, \\ \widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta,k} \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad (4)$

 $\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad \text{Variance estimation: infer the standard deviation} \\ \overline{\sigma_{\theta}} = f_{\sigma}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}, \qquad \text{and control the prediction diversity} \\ \widehat{\mathbb{S}}_{\theta} = [\widehat{\mathbf{S}}_{\theta,1}, \cdots, \widehat{\mathbf{S}}_{\theta,K}] = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2 \times K}, \\ \widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta,k} \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad (4)$

$$\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad \text{Sample prediction: predict K samples simultaneously to better allocate sample position.} \\ \widehat{\mathbf{S}}_{\theta} = [\widehat{\mathbf{S}}_{\theta,1}, \cdots, \widehat{\mathbf{S}}_{\theta,K}] = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2 \times K}, \\ \widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta,k} \in \mathbb{R}^{T_{\mathrm{f}} \times 2}, \qquad (4)$$

$$\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2},$$

$$\sigma_{\theta} = f_{\sigma}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}) \in \mathbb{R},$$

$$\widehat{\mathbb{S}}_{\theta} = [\widehat{\mathbf{S}}_{\theta, 1}, \cdots, \widehat{\mathbf{S}}_{\theta, K}] = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta}) \in \mathbb{R}^{T_{\mathrm{f}} \times 2 \times K},$$

$$\widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta, k} \in \mathbb{R}^{T_{\mathrm{f}} \times 2},$$
(4) reparameterization

Loss function:

$$\mathcal{L} = \mathcal{L}_{\text{distance}} + \mathcal{L}_{\text{uncertainty}}$$
$$= w \cdot \min_{k} \|\mathbf{Y} - \widehat{\mathbf{Y}}_{k}\|_{2} + \left(\frac{\sum_{k} \|\mathbf{Y} - \widehat{\mathbf{Y}}_{k}\|_{2}}{\sigma_{\theta}^{2}K} + \log \sigma_{\theta}^{2}\right),$$
$$\text{best prediction loss} \quad \text{uncertainty loss}$$

Inference

Algorithm 1 Leapfrog Diffusion Model in Inference **Input:** Observed trajectories $\mathbf{X}, \mathbb{X}_{\mathcal{N}}$, Leapfrog step τ **Output:** Predicted trajectories $\widehat{\mathcal{Y}}$ 1: $\mu_{\theta} = f_{\mu}(\mathbf{X}, \mathbb{X}_{\mathcal{N}})$ ▷ Mean estimation 2: $\sigma_{\theta} = f_{\sigma}(\mathbf{X}, \mathbb{X}_{\mathcal{N}})$ ▷ Variance estimation Sample prediction 3: $\widehat{\mathbb{S}}_{\theta} = f_{\widehat{\mathbb{S}}}(\mathbf{X}, \mathbb{X}_{\mathcal{N}}, \sigma_{\theta})$ 4: $\widehat{\mathbf{Y}}_{k}^{\tau} = \mu_{\theta} + \sigma_{\theta} \cdot \widehat{\mathbf{S}}_{\theta,k}, k = 1, \cdots, K \triangleright \text{Reparameterization}$ 5: for $\gamma = \tau - 1, ..., 0$ do $\widehat{\mathbf{Y}}_{\mu}^{\gamma} = f_{\text{denoise}}(\widehat{\mathbf{Y}}_{\mu}^{\gamma+1}, \mathbf{X}, \mathbb{X}_{\mathcal{N}}) \quad \triangleright \text{Denoising step}$ 6: 7: **end for** 8: $\widehat{\mathcal{Y}} = \widehat{\mathcal{Y}}^0 = \{\widehat{\mathbf{Y}}^0_1, \cdots, \widehat{\mathbf{Y}}^0_K\}$ 9: return $\widehat{\mathcal{Y}}$

• Sport datasets

Table 1. Comparison with baseline models on NBA dataset. $minADE_{20}$ /minFDE₂₀ (meters) are reported. **Bold**/underlined fonts represent the best/second-best result. Compared to the previous SOTA method, MID, our method achieves a 15.6%/13.4% ADE/FDE improvement.

Time	Social- GAN [15]	STGAT [19]	Social- STGCNN [31]	PECNet [27]	STAR [52]	Trajectron++ [38]	MemoNet [50]	NPSN [2]	GroupNet [49]	MID [14]	Ours
	CVPR'18	ICCV'19	CVPR'20	ECCV'20	ECCV'20	ECCV'20	CVPR'22	CVPR'22	CVPR'22	CVPR'22	
1.0s	0.41/0.62	0.35/0.51	0.34/0.48	0.40/0.71	0.43/0.66	0.30/0.38	0.38/0.56	0.35/0.58	0.26/0.34	0.28/0.37	0.18/0.27
2.0s	0.81/1.32	0.73/1.10	0.71/0.94	0.83/1.61	0.75/1.24	0.59/0.82	0.71/1.14	0.68/1.23	<u>0.49/0.70</u>	0.51/0.72	0.37/0.56
3.0s	1.19/1.94	1.04/1.75	1.09/1.77	1.27/2.44	1.03/1.51	0.85/1.24	1.00/1.57	1.01/1.76	0.73/1.02	<u>0.71/0.98</u>	0.58/0.84
Total(4.0s)	1.59/2.41	1.40/2.18	1.53/2.26	1.69/2.95	1.13/2.01	1.15/1.57	1.25/1.47	1.31/1.79	<u>0.96</u> /1.30	<u>0.96/1.27</u>	0.81/1.10

Table 2. Comparison with baseline models on NFL dataset. $minADE_{20}/minFDE_{20}$ (meters) are reported. **Bold**/<u>underlined</u> fonts represent the best/second-best result. Compared to the previous SOTA method, MID, our method achieves a 23.7%/21.9% improvement.

Time	Social- GAN [15]	STGAT [19]	Social- STGCNN [31]	PECNet [27]	STAR [52]	Trajectron++ [38]	LB-EBM [34]	NPSN [2]	GroupNet [49]	MID [14]	Ours
	CVPR'18	ICCV'19	CVPR'20	ECCV'20	ECCV'20	ECCV'20	CVPR'21	CVPR'22	CVPR'22	CVPR'22	
1.0s	0.37/0.68	0.35/0.64	0.45/0.64	0.52/0.97	0.49/0.84	0.41/0.65	0.75/1.05	0.43/0.64	0.32/ <u>0.57</u>	<u>0.30</u> /0.58	0.21/0.34
2.0s	0.83/1.53	0.82/1.60	1.06/1.87	1.19/2.47	1.02/1.84	0.93/1.65	1.26/2.28	0.83/1.52	0.73/1.39	<u>0.71/1.31</u>	0.49/0.91
Total(3.2s)	1.44/2.51	1.39/2.48	1.82/3.18	1.99/3.84	1.51/2.97	1.54/2.58	1.90/3.25	1.32/2.27	1.21/2.15	<u>1.14/1.92</u>	0.87/1.50

SOTA performance!

• Pedestrian dataset

Table 3. Comparison with baseline models on SDD dataset. $minADE_{20}/minFDE_{20}$ (meters) are reported. **Bold**/<u>underlined</u> fonts represent the best/second-best result. Our method achieves the best performance in ADE/FDE. * represents the reproduced results from open source.

Time	Social- GAN [15]	SOPHIE [36]	Trajectron++ [38]	NMMP [18]	Evolve- Graph [25]	PECNet [27]	MemoNet [50]	NPSN [2]	GroupNet [49]	MID* [14]	Ours
	CVPR'18	CVPR'19	ECCV'20	CVPR'20	NIPS'20	ECCV'20	CVPR'22	CVPR'22	CVPR'22	CVPR'22	
4.8s	27.23/41.44	16.27/29.38	19.30/32.70	14.67/26.72	13.90/22.90	9.96/15.88	<u>8.56</u> /12.66	8.56/11.85	9.31/16.11	9.73/15.32	8.48/11.66

Table 4. Comparison with baseline models on ETH-UCY dataset. minADE₂₀/minFDE₂₀ (meters) are reported. **Bold**/<u>underlined</u> fonts represent the best/second-best result. In most subsets, our method achieves the best or second-best performance in ADE/FDE.

Subset	Social- GAN [15]	NMMP [18]	STAR [52]	PECNet [27]	Trajectron++ [38]	Agentformer [53]	MemoNet [50]	NPSN [2]	GroupNet [49]	MID [14]	Ours
	CVPR'18	CVPR'20	ECCV'20	ECCV'20	ECCV'20	ICCV'21	CVPR'22	CVPR'22	CVPR'22	CVPR'22	
ETH	0.87/1.62	0.61/1.08	0.36/0.65	0.54/0.87	0.61/1.02	0.45/0.75	0.40/ <u>0.61</u>	0.40/0.76	0.46/0.73	0.39 /0.66	0.39/0.58
Hotel	0.67/1.37	0.33/0.63	0.17/0.36	0.18/0.24	0.19/0.28	0.14/0.22	0.11/0.17	0.12/0.18	0.15/0.25	0.13/0.22	0.11/0.17
Univ	0.76/1.52	0.52/1.11	0.31/0.62	0.35/0.60	0.30/0.54	0.25/0.45	0.24/0.43	0.22/0.41	0.26/0.49	0.22 /0.45	0.26/ <u>0.43</u>
Zara1	0.35/0.68	0.32/0.66	0.29/0.52	0.22/0.39	0.24/0.42	0.18/0.30	0.18/0.32	0.17 / <u>0.31</u>	0.21/0.39	0.17 /0.30	0.18/ 0.26
Zara2	0.42/0.84	0.43/0.85	0.22/0.46	0.17/0.30	0.18/0.32	0.14/0.24	0.14/0.24	0.12 /0.24	0.17/0.33	0.13/0.27	<u>0.13</u> / 0.22
AVG	0.61/1.21	0.41/0.82	0.26/0.53	0.29/0.48	0.30/0.51	0.23/0.39	0.21 / <u>0.35</u>	0.21 /0.38	0.25/0.44	0.21 /0.38	0.21/0.33

• Ablation on KEY components

Each component is beneficial!

Table 5. Ablation of leapfrog initializer in the leapfrog diffusion model on NFL with various prediction numbers K. Each module in the leapfrog initializer is beneficial.

Mean	Variance	Sample	<i>K</i> –7	K-A
$\mu_{ heta}$	$\sigma_{ heta}$	$\widehat{\mathbb{S}}_{ heta}$	Μ-2	M-4
\checkmark		correlated	$2.04 \pm 0.18/4.08 \pm 0.48$	$1.63 \pm 0.13/3.05 \pm 0.16$
	\checkmark	correlated	$1.95 \pm 0.08/3.90 \pm 0.22$	$1.49 \pm 0.01/2.86 \pm 0.02$
\checkmark	\checkmark	i.i.d	$2.36 \pm 0.13/4.31 \pm 0.22$	$1.90 \pm 0.07/3.31 \pm 0.05$
\checkmark	\checkmark	correlated	$1.84 \pm 0.05/3.61 \pm 0.11$	$1.47 \pm 0.01/2.83 \pm 0.02$
Mean	Variance	Sample	<i>V</i> _9	<i>K</i> _20
$\mu_{ heta}$	$\sigma_{ heta}$	$\widehat{\mathbb{S}}_{ heta}$	M=0	K=20
\checkmark		correlated	$1.25 \pm 0.02/2.31 \pm 0.04$	$0.99 \pm 0.03 / 1.68 \pm 0.04$
	\checkmark	correlated	$1.23 \pm 0.01/2.20 \pm 0.01$	$0.95 \pm 0.01/1.54 \pm 0.02$
\checkmark	\checkmark	i.i.d	$1.51 \pm 0.04/2.67 \pm 0.07$	$1.18 \pm 0.02 / 1.90 \pm 0.03$
\checkmark	\checkmark	correlated	$1.18 \pm 0.01/2.19 \pm 0.01$	$0.89 \pm 0.01 / 1.51 \pm 0.02$

• Ablation on steps (time consumption) and performance

Table 6. Different steps Γ/τ in the standard/leapfrog diffusion model on NBA. $\tau = 5$ provides the best performance.

Method	Steps	1.0s	2.0s	3.0s	Total(4.0s)	Inference (ms)
	10	0.45/0.51	0.98/1.55	1.62/2.56	2.21/2.77	$\sim \! 87$
Standard	50	0.26/0.36	0.56/0.91	0.89/1.42	1.21/1.73	~ 446
Diffusion	100	0.21/0.28	0.44/0.64	0.69/0.95	0.94/1.21	$\sim \! 886$
(Γ)	200	0.21/0.29	0.44/0.65	0.69/0.97	0.94/1.21	>1s
	500	0.21/0.30	0.45/0.68	0.70/0.99	0.95/1.23	>1s
Leapfrog	3	0.20/0.31	0.40/0.62	0.62/0.88	0.84/1.10	~ 30
Diffusion	5	0.18/0.27	0.37/0.56	0.58/0.84	0.81 /1.10	$\sim \!\! 46$
(au)	10	0.17 /0.27	0.37/0.58	0.59/0.85	0.82/1.08	~89

Ablation on fast sampling methods

Table 7. Comparison to other fast sampling methods on NBA. $\eta = 1$ in DDIM. Our method achieves the best performance.

Method	1 00	2 06	3.00	Total(4.0s)	Inference
Meulou	1.08	2.08	5.08	10(a)(4.08)	(ms)
PD (K=1)	0.20/0.33	0.45/0.75	0.72/1.13	0.98/1.39	~ 452
PD (K=2)	0.21/0.34	0.46/0.78	0.73/1.15	0.98/1.41	~ 230
PD (K=3)	0.23/0.37	0.48/0.79	0.73/1.15	0.98/1.43	~121
PD (K=4)	0.25/0.38	0.50/0.80	0.75/1.16	0.99/1.44	~ 64
DDIM (S=2)	0.20/0.29	0.42/0.65	0.66/0.96	0.91/1.21	~530
DDIM (S=10)	0.22/0.32	0.44/0.71	0.69/1.04	0.93/1.31	~ 107
DDIM (S=20)	0.24/0.35	0.49/0.81	0.76/1.21	1.02/1.51	~ 54
Ours	0.18/0.27	0.37/0.56	0.58/0.84	0.81/1.10	\sim 46

• Visualization comparison on NBA

Light color: past trajectory; blue/red/green color: two teams and the basketball.

• Visualization comparison of different sampling mechanism

Thanks for your listening!