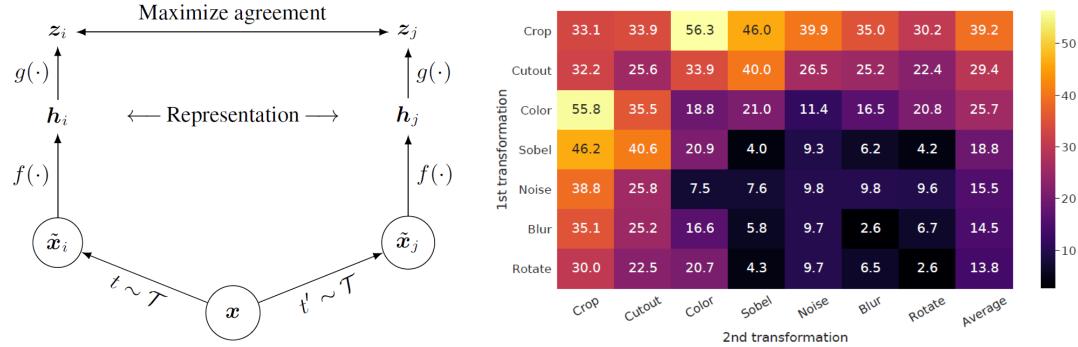

Mixed Autoencoder for Self-supervised Visual Representation Learning

Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung <u>https://kaichen1998.github.io/</u>

> Poster session: @THU-PM-204 June 1st, 2023

Overview

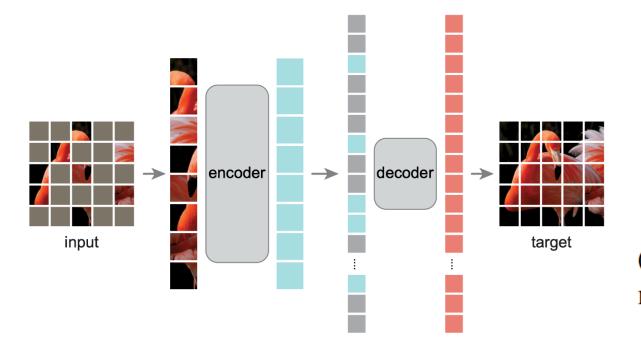
- Mixing as effective augmentation for Masked Image Modeling (MIM) ⅔
- Theoretical analysis between MIM and previous supervisions.



• Mixed Autocoder (MixedAE) achieves SoTA performance with superior efficiency (e.g., surpasses iBOT with 2x acceleration).

Zhou, Jinghao, et al. "iBOT: Image BERT Pre-Training with Online Tokenizer." ICLR. 2022.

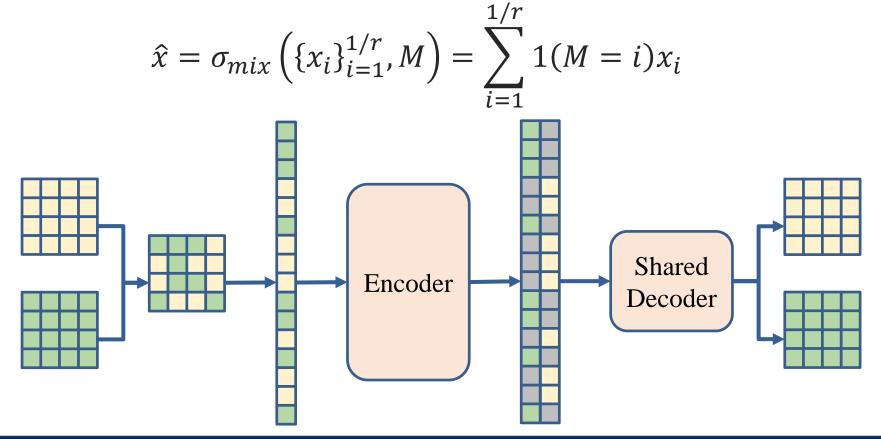
Contrastive Learning


- Discriminate positive samples from negative ones.
- Rely on strong data augmentation pipelines.

Chen, Ting, et al. "A Simple Framework for Contrastive Learning of Visual Representations." ICML. 2020.

Masked Autoencoder (MAE)

- A representative implementation of MIM.
- Perform even worse with strong data augmentations.


case	ft	lin
none	84.0	65.7
crop, fixed size	84.7	73.1
crop, rand size	84.9	73.5
crop + color jit	84.3	71.9

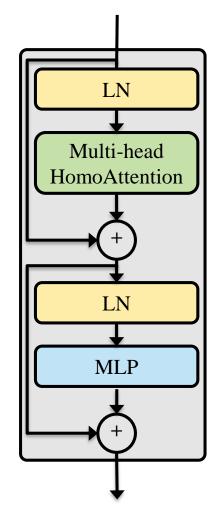
(e) **Data augmentation**. Our MAE works with minimal or no augmentation.

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." CVPR. 2022.

A Simple Mixing Baseline

- Mixed image reconstruction: symmetric mixing
 - Given a mixing ratio $r \in (0, 0.5]$ and a random mixing mask M,

Mutual Information Analysis


- Image mixing will improve the mutual information (MI),
 While masking is introduced to decrease MI instead.
- Target-invariant
 - MI increasement is appealing for supervised and contrastive learning

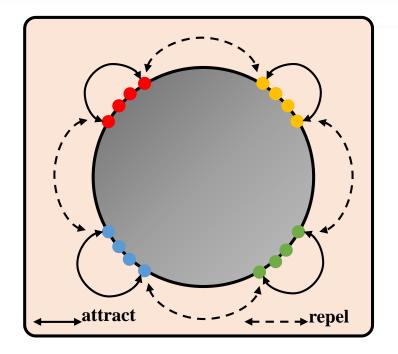
$$I(\sigma_{mix}(\{X_1, X_2\}, M), X_1) = I(\mathbb{1}(M = 1)X_1 + \mathbb{1}(M = 2)X_2; X_1)$$

= $H(X_1) - H(X_1|\mathbb{1}(M = 1)X_1 + \mathbb{1}(M = 2)X_2)$
 $\geq H(X_1) - H(X_1|\mathbb{1}(M = 1)X_1 + \mathbb{1}(M = 2)\overrightarrow{\mathbf{0}})$
= $I(\sigma_{MAE}(X_1, M), X_1),$

Homologous Recognition

- Homologous attention
 - Explicit recognition of homo patches on-the-fly
 - Adopt a TopK(\cdot) sampling in standard MHSA

 $A_{HomoAtt} = \operatorname{softmax}(\operatorname{TopK}(\boldsymbol{qk}^T / \sqrt{D_h})),$

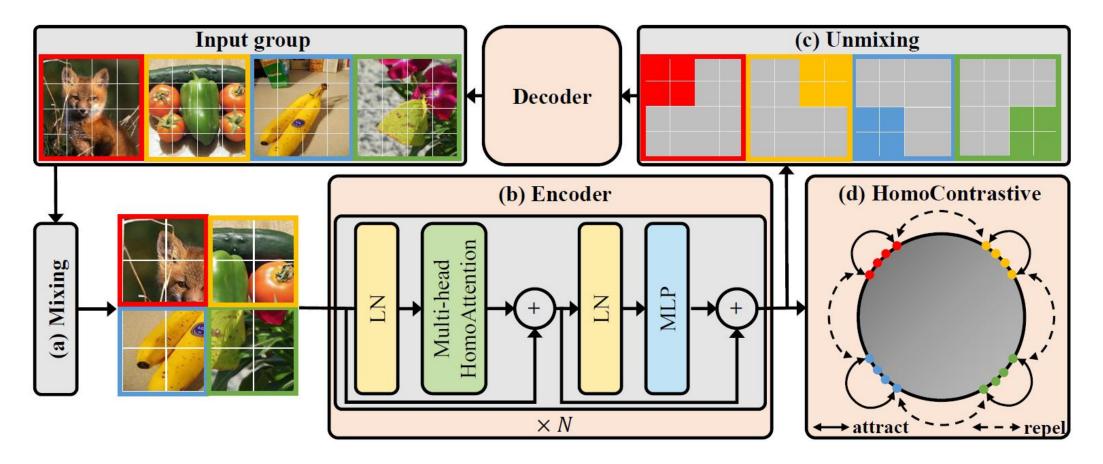


Homologous Recognition

- Homologous contrastive
 - Verify homologous patches by similarity
 - Homologous patches as positive samples

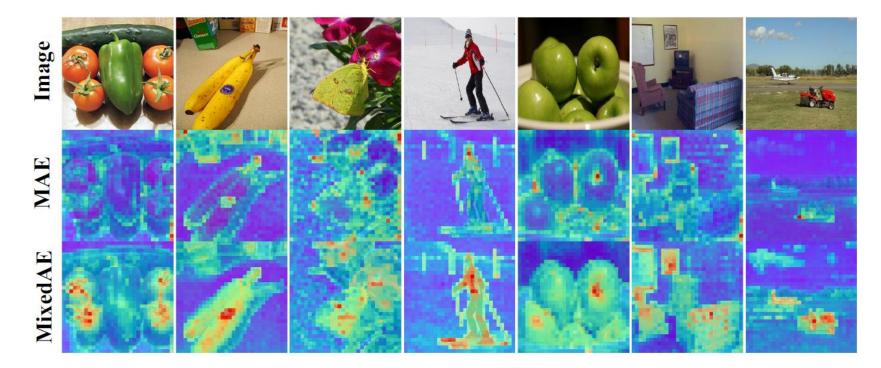
$$\mathcal{L}_{HomoCon} = -\sum_{l=1}^{L} \sum_{l^+} \log \frac{\exp(\cos(\hat{\boldsymbol{z}}_l^j, \hat{\boldsymbol{z}}_{l^+}^j)/\tau)}{\sum_{l'\neq l}^{L} \exp(\cos(\hat{\boldsymbol{z}}_l^j, \hat{\boldsymbol{z}}_{l'}^j)/\tau)},$$

 Perform as a regularization term instead of a separate supervision



\mathcal{L}_{recon}	$\mathcal{L}_{HomoCon}$	acc	mIoU
\checkmark		82.4	45.0
	\checkmark	7.8	8.3
\checkmark	\checkmark	82.7	46.4

(b) Functionality of the $\mathcal{L}_{HomoCon}$. When adopting $\mathcal{L}_{HomoCon}$ alone, *MixedAE* cannot even achieve reasonable transfer performance.


Mixed Autoencoder (MixedAE)

• Formulated in a multi-task learning manner

Object-aware Pre-training

- Object-aware Pre-training
 - Single-centric-object guarantee (Chen et al., 2021)

Chen, et al. "MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving." ICCV 2021.

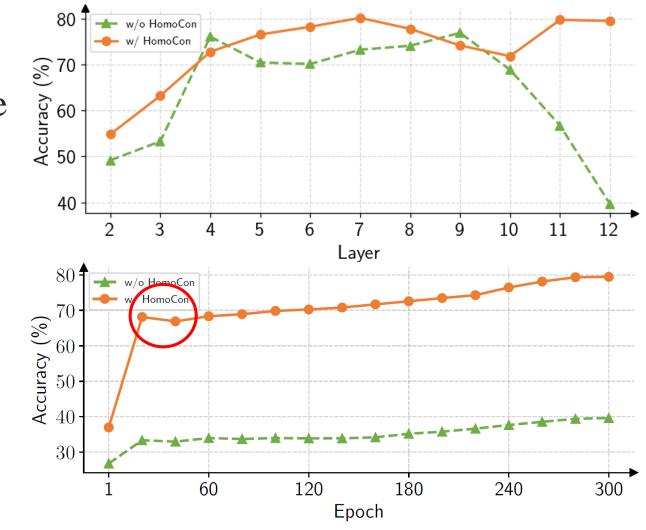
• Effectiveness: SoTA performance under various overheads

Mathad	Pre-train	Pre-train [†]	ImageNet	ADE20K			CO	CO		
Method	Epochs	GPU-days	Top-1 Acc.	mIoU	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP^{mk}	AP_{50}^{mk}	AP^{mk}_{75}
DeiT [52]	300	19.6	81.8	46.9	48.8	68.7	52.7	42.5	65.9	45.5
MoCov3 [11]	600††	54.8	82.8	46.8	47.2	66.9	50.8	41.1	63.6	44.1
DINO [7]	1600††	120.5	82.8	46.9	49.5	69.1	53.6	42.9	66.0	46.3
BEiT [3]	300	32.1	82.9	44.7	39.3	57.7	42.4	34.8	55.2	36.8
MAE [27]	300	16.4	82.7	46.1	47.2	65.8	51.3	41.1	62.9	44.4
MixMIM [38]	300	40.2	83.2	-	-	-	-	-	-	-
CIM-RevDet [22]	300	42.7	83.1	-	-	-	-	-	-	-
CIM-ResPix [22]	300	42.7	83.3	-	-	-	-	-	-	-
MixedAE	300	16.9	$83.1^{+0.4}$	$47.0^{+0.9}$	$47.8^{+0.6}$		$52.0^{+0.7}$		$63.6^{+0.7}$	
MixedAE-Full*	300	30.8	$83.7^{+1.0}$	$47.4^{+1.3}$	$48.9^{+1.7}$	$67.6^{+1.8}$	$53.3^{+2.0}$	$42.5^{+1.4}$	$64.8^{+1.9}$	$45.9^{+1.5}$
MixedAE-Full	300	62.3	83.8 ^{+1.1}	48.9 ^{+2.8}	51.0 ^{+3.8}	69.7 ^{+3.9}	55.2 ^{+3.9}	44.1 ^{+3.0}	67.0 ^{+4.1}	47.9 ^{+3.5}
BEiT [3]	800	85.5	83.2	45.6	40.8	59.4	44.1	36.0	56.8	38.2
MAE [27]	800	43.7	83.3	47.2	49.4	68.1	53.9	42.9	65.5	46.6
MixedAE	800	45.0	83.5 ^{+0.2}	48.7 ^{+1.5}	50.3 ^{+0.9}	69.1 ^{+1.0}	54.8 ^{+0.9}	43.5 ^{+0.6}	66.2 ^{+0.7}	47.4 ^{+0.8}
MAE [27]	1600	87.4	83.6	48.1	50.6	69.4	55.0	43.8	66.6	47.5
iBOT [63]	1600††	172.1	83.8	49.6	51.2	70.1	55.2	44.3	67.4	48.0
MixedAE	1600	90.1	83.9 ^{+0.3}	49.8 ^{+1.7}	51.5 ^{+0.9}	70.2 ^{+0.8}	55.9 ^{+0.9}	44.5 ^{+0.7}	67.5 ^{+0.9}	48.2 ^{+0.7}

• Efficiency: exceed strong iBOT with a 2x acceleration

Mathad	Pre-train	Pre-train [†]	ImageNet	ADE20K			CO	CO		
Method	Epochs	GPU-days	Top-1 Acc.	mIoU	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP^{mk}	AP_{50}^{mk}	AP_{75}^{mk}
DeiT [52]	300	19.6	81.8	46.9	48.8	68.7	52.7	42.5	65.9	45.5
MoCov3 [11]	600††	54.8	82.8	46.8	47.2	66.9	50.8	41.1	63.6	44.1
DINO [7]	1600††	120.5	82.8	46.9	49.5	69.1	53.6	42.9	66.0	46.3
BEiT [3]	300	32.1	82.9	44.7	39.3	57.7	42.4	34.8	55.2	36.8
MAE [27]	300	16.4	82.7	46.1	47.2	65.8	51.3	41.1	62.9	44.4
MixMIM [38]	300	40.2	83.2	-	-	-	-	-	-	-
CIM-RevDet [22]	300	42.7	83.1	-	-	-	-	-	-	-
CIM-ResPix [22]	300	42.7	83.3	-	-	-	-	-	-	-
MixedAE	300	16.9	$83.1^{+0.4}$	$47.0^{+0.9}$	$47.8^{+0.6}$	$66.6^{+0.8}$	$52.0^{+0.7}$	$41.6^{+0.5}$	$63.6^{+0.7}$	
MixedAE-Full*	300	30.8	$83.7^{+1.0}$	$47.4^{+1.3}$	$48.9^{+1.7}$	$67.6^{+1.8}$	$53.3^{+2.0}$		$64.8^{+1.9}$	$45.9^{+1.5}$
MixedAE-Full	300	62.3	83.8 ^{+1.1}	48.9 ^{+2.8}	51.0 ^{+3.8}	69.7 ^{+3.9}	55.2 ^{+3.9}	44.1 ^{+3.0}	67.0 ^{+4.1}	47.9 ^{+3.5}
BEiT [3]	800	85.5	83.2	45.6	40.8	59.4	44.1	36.0	56.8	38.2
MAE [27]	800	43.7	83.3	47.2	49.4	68.1	53.9	42.9	65.5	46.6
MixedAE	800	45.0	$83.5^{+0.2}$	48.7 ^{+1.5}	50.3 ^{+0.9}	69.1 ^{+1.0}	54.8 ^{+0.9}	43.5 ^{+0.6}	66.2 ^{+0.7}	47.4 ^{+0.8}
MAE [27]	1600	87.4	83.6	48.1	50.6	69.4	55.0	43.8	66.6	47.5
iBOT [63]	1600 ^{††}	172.1	83.8	49.6	51.2	70.1	55.2	44.3	67.4	48.0
MixedAE	1600	90.1	83.9 ^{+0.3}	49.8 ^{+1.7}	51.5 ^{+0.9}	70.2 ^{+0.8}	55.9 ^{+0.9}	44.5 ^{+0.7}	67.5 ^{+0.9}	48.2 ^{+0.7}

• Object-aware pre-training: better on dense perception tasks


Mathad	Pre-train	Pre-train [†]	ImageNet	ADE20K							
Method	Epochs	GPU-days	Top-1 Acc.	mIoU	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP^{mk}	AP_{50}^{mk}	$\operatorname{AP}_{75}^{mk}$	
DeiT [52]	300	19.6	81.8	46.9	48.8	68.7	52.7	42.5	65.9	45.5	
MoCov3 [11]	600††	54.8	82.8	46.8	47.2	66.9	50.8	41.1	63.6	44.1	
DINO [7]	1600††	120.5	82.8	46.9	49.5	69.1	53.6	42.9	66.0	46.3	
BEiT [3]	300	32.1	82.9	44.7	39.3	57.7	42.4	34.8	55.2	36.8	
MAE [27]	300	16.4	82.7	46.1	47.2	65.8	51.3	41.1	62.9	44.4	
MixMIM [38]	300	40.2	83.2	-	-	-	-	-	-	-	
CIM-RevDet [22]	300	42.7	83.1	-	-	-	-	-	-	-	
CIM-ResPix [22]	300	42.7	83.3	-	-	-	-	-	-	-	
MixedAE	300	16.9	$83.1^{+0.4}$	$47.0^{+0.9}$	$47.8^{+0.6}$	$66.6^{+0.8}$	$52.0^{+0.7}$			$45.0^{+0.6}$	
MixedAE-Full*	300	30.8	$83.7^{+1.0}$	$47.4^{+1.3}$	$48.9^{+1.7}$	$67.6^{+1.8}$	$53.3^{+2.0}$			$45.9^{+1.5}$	
MixedAE-Full	300	62.3	83.8 ^{+1.1}	48.9 ^{+2.8}	51.0 ^{+3.8}	69.7 ^{+3.9}	55.2 ^{+3.9}	44.1 ^{+3.0}	67.0 ^{+4.1}	47.9 ^{+3.5}	
BEiT [3]	800	85.5	83.2	45.6	40.8	59.4	44.1	36.0	56.8	38.2	
MAE [27]	800	43.7	83.3	47.2	49.4	68.1	53.9	42.9	65.5	46.6	
MixedAE	800	45.0	$83.5^{+0.2}$	48.7 ^{+1.5}	50.3 ^{+0.9}	69.1 ^{+1.0}	54.8 ^{+0.9}	43.5 ^{+0.6}	66.2 ^{+0.7}	47.4 ^{+0.8}	
MAE [27]	1600	87.4	83.6	48.1	50.6	69.4	55.0	43.8	66.6	47.5	
iBOT [63]	1600††	172.1	83.8	49.6	51.2	70.1	55.2	44.3	67.4	48.0	
MixedAE	1600	90.1	83.9 ^{+0.3}	49.8 ^{+1.7}	51.5 ^{+0.9}	70.2 ^{+0.8}	55.9 ^{+0.9}	44.5 ^{+0.7}	67.5 ^{+0.9}	48.2 ^{+0.7}	

• Transferability

Method	Aircraft	Caltech	Cars	C10	C100	DTD	Flowers	Food	Pets	SUN	VOC	Avg.
SSL ResNets												
MoCov2 [10]	79.9	84.4	75.2	96.5	71.3	69.5	94.4	76.8	79.8	55.8	71.7	77.7
SimCLR [9]	78.7	82.9	79.8	96.2	79.1	70.2	94.3	82.2	83.2	61.1	78.2	80.5
BYOL [25]	79.5	89.4	84.6	97.0	84.0	73.6	94.5	85.5	89.6	64.0	82.7	84.0
SwAV [6]	83.1	89.9	86.8	96.8	84.4	75.2	95.5	87.2	89.1	66.2	84.7	85.3
SDR [40]	82.6	89.0	87.5	97.4	84.4	75.6	97.0	86.1	89.3	66.1	85.3	85.5
SSL Transform	ers											
MoCov3 [11]	76.6	91.2	86.6	98.3	88.3	72.6	95.5	86.4	92.0	65.6	84.5	85.2
DINO [7]	69.4	91.2	81.3	98.4	88.9	77.6	96.9	87.3	93.5	64.7	86.3	85.1
BEiT [3]	66.3	80.2	78.6	96.1	80.0	69.9	92.9	83.2	85.3	57.1	76.7	78.7
MAE [27]	78.2	91.2	88.4	97.0	82.5	75.3	96.6	84.7	92.6	65.4	86.0	85.3
MixedAE	82.1	91.5	88.8	97.9	85.9	7 8. 7	97.1	87.4	93.6	66.2	86.4	86.9 ^{+1.6}

Analysis

- Effect of Homo Recognition
 - Fluctuate w/o Homo contrastive
 - Stable and fast convergence w/ Homo contrastive
 - However, still far from 100%, suggesting potential future improvement space

Thank you!

Paper: <u>https://arxiv.org/abs/2303.17152</u> Also check our series of works on efficient SSL: [link] Welcome to join our poster session (@THU-PM-204)!