

THU-AM-125 Correspondence Transformers with Asymmetric Feature Learning and Matching Flow Super-Resolution

Yixuan Sun^{1,*}, Dongyang Zhao², Zhangyue Yin², Yiwen Huang², Tao Gui² and Wenqiang Zhang^{1,2}, Weifeng Ge^{2,†} ¹Academy for Engineering and Technology, Fudan University ²School of Computer Science, Fudan University {wfge}@fudan.edu.cn

https://github.com/YXSUNMADMAX/ACTR

Introduction

- Existing Image matching task can be divided as Feature Matching, Dense Matching and Semantic Correspondence.
- Semantic Correspondence Aims To Establish Pixel-level Correspondence between Semantically Adjacent Image Pair.

Task of Feature Matching

Task of Dense Matching

Task of Semantic Correspondence

Challenges

- Large intra-class variation.
- Requires high-quality patch-level representations with aligned semantic spaces.
- Requires matching representation in high resolution.

Previous Frameworks

- Siamese Backbone = Shared Semantic Space
- 4D Matrix-based Refinement.

Further Incremental Designs

- Further Semantic Alignment.
- 2D Semantic Flow based Refinement.

Our Approach

- Asymmetric Alignment Block.
- Multi-Path Semantic Flow Superresolution Block.

The usage of Multi-path Fusion

Combines the Advantages of Matching Results Under Different Alignment Levels

ACTR can clearly distinguish the subtle semantic differences which usually leads to mismatching for previous methods.

Comparison with other methods

Liu et al. 2020; Cho et al. 2021; Zhao et al. 2021;

Evaluation

We set ACTR in 256x256 Resolution as our base model.

Methods	Backbone	Input Resolution	Multi-Scale	SPair-71K α : bbox	F	$\alpha : img$	Ĺ
		Input to solution		0.1	0.05	0.1	0.15
SCOT [30]	ResNet-101	$300 \times 300^*$	\checkmark	35.6	63.1	85.4	92.7
DHPF [35]	ResNet-101	240×240	\checkmark	37.3	75.7	90.7	95
CHM [33]	ResNet-101	256 imes 256	×	46.3	80.1	91.6	94.9
CATs [8]	ResNet-101	256 imes 256	\checkmark	49.9	75.4	92.6	96.4
MMNet-FCN [49]	ResNet-101	224×320	\checkmark	50.4	81.1	91.6	95.9
TransforMatcher [24]	ResNet-101	240×240	\checkmark	53.7	80.8	91.8	-
CATs [8]	iBOT-B	256×256	\checkmark	55.2	77.8	93.1	96.8
TransforMatcher [24]	iBOT-B	240×240	\checkmark	57.9	77.3	93.3	96.6
Baseline	iBOT-B	256 imes 256	×	57.7	78.9	93.2	96.5
ACTR	iBOT-B	256×256	×	62.1	81.2	94.0	97.0
VAT [20]	ResNet-101	512×512	\checkmark	54.2	-	92.3	-
VAT [20]	iBOT-B	512×512	\checkmark	59.0	73.0	92.6	96.7
Baseline _h	iBOT-B	512×512	×	61.6	79.3	91.6	95.9
$ACTR_h$	iBOT-B	512×512	×	65.4	82.0	93.5	96.7

Yields large Improvements over several benchmarks.

Evaluation

We set ACTR in 256x256 Resolution as our base model.

Methods	aero.	bike	bird	boat	bott.	bus	car	cat	chai	cow	dog	hors.	mbik.	pers.	plan.	shee.	trai.	tv	all
SCOT [9]	34.9	20.7	63.8	21.1	43.5	27.3	21.3	63.1	20	42.9	42.5	31.1	29.8	35	27.7	24.4	48.4	40.8	35.6
DHPF [13]	38.4	23.8	68.3	18.9	42.6	27.9	20.1	61.6	22	46.9	46.1	33.5	27.6	40.1	27.6	28.1	49.5	46.5	37.3
CATs [3]	52	34.7	72.2	34.3	49.9	57.5	43.6	66.5	24.4	63.2	56.5	52	42.6	41.7	43	33.6	72.6	58	<u>49.9</u>
MMNet [16]	55.9	37	65	35.4	50	63.9	45.7	62.8	28.7	65	54.7	51.6	38.5	34.6	41.7	36.3	77.7	62.5	50.4
TransforMatcher [8]	59.2	39.3	73.0	41.2	52.5	66.3	55.4	67.1	26.1	67.1	56.6	53.2	45.0	39.9	42.1	35.3	75.2	68.6	53.7
CATs [‡] [3]	56.7	41.3	77.8	35.0	54.8	59.8	45.2	69.9	31.4	63.7	57.6	62.5	46.7	49.1	43.2	43.5	76.4	64.1	55.2
TransforMatcher [‡] [8]	57.1	47.4	83.5	42.3	56.8	57.0	55.4	75.3	34.5	66.1	64.2	60.2	52.8	55.2	40.5	46.0	75.1	65.8	57.9
ACTR	65.1	48.5	82.3	50.4	55.9	65.3	63.1	72.8	35.8	74.1	70.3	68.9	58.6	57.1	46.8	49.5	84.4	73.3	62.1
VAT [6]	56.5	37.8	73.0	38.7	50.9	58.2	40.8	70.5	20.4	72.6	61.1	57.8	45.6	48.1	52.4	39.7	77.7	71.4	54.2
VAT [‡]	58.6	47.8	83.2	45.6	52.4	67.1	61.4	73.4	30.2	76.5	67.7	66.9	48.0	53.3	46.6	44.3	84.6	60.7	59.0
ACTR_h	64.9	54.8	87.6	49.2	55.7	74.4	66.5	80.7	35.3	82.1	75.2	71.9	54.0	62.4	54.9	53.5	88.7	71.0	65.4

Yields large Improvements on a challenging dataset. Reach best result on 14/18 sub-classes.

Evaluation

We set ACTR in 256x256 Resolution as our base model.

5		PF-WI	LLOW	
Methods	α :	bbox	α :	bkp
	0.05	0.1	0.05	0.1
DHPF [35]	49.5	77.6	-	71.0
CHM [33]	52.7	79.4	-	69.6
CATs [8]	50.3	79.2	40.7	69.0
SCOT [30]	-	-	47.8	76.0
TransforMatcher [24]	-	65.3	-	76.0
CATs [‡]	59.4	86.3	51.1	79.5
TransforMatcher [‡]	57.0	84.3	48.8	78.3
ACTR	60.3	87.2	52.6	79.9

Yields better generalizability when testing on PF-WILLOW.

Ablation Results

We set ACTR in 256x256 Resolution as our base model.

Methods	$\begin{array}{l} \text{SPair-71K} \\ \alpha_{bbox} = 0.1 \end{array}$
ACTR	62.1
w/o source branch positional encoding w/o target branch token reweighting w/o asymmetric cross attention module	$\begin{array}{c} 60.4 \ (1.7 \downarrow) \\ 60.7 \ (1.4 \downarrow) \\ 60.1 \ (2.0 \downarrow) \end{array}$
w/o multi-path super-resolution w/o dual window flow refinement w/o flow super-resolution module	$ \begin{array}{c c} 61.0 & (1.1\downarrow) \\ 60.6 & (1.5\downarrow) \\ 59.0 & (3.1\downarrow) \end{array} $
Baseline	57.7 (4.4↓)

Design of asymmetric alignment and multi-path super-resolution can help to improve the accuracy in semantic correspondence Correspondence Transformers with Asymmetric Feature Learning and Matching Flow Super-Resolution

Thank You

Academy of Engineering & Technology, Fudan University, Shanghai, China School of Computer Science, Fudan University, Shanghai, China {wfge}@fudan.edu.cn