

Harmonious Feature Learning for Interactive Hand-Object Pose Estimation

Zhifeng Lin¹ Changxing Ding^{1,2*} Huan Yao¹ Zengsheng Kuang¹ Shaoli Huang³ ¹ South China University of Technology ² Pazhou Lab, Guangzhou ³ Tencent AI-Lab, Shenzhen Paper Tag : WED-PM-060

Understanding hand-object interaction

• Estimating 3D hand and object pose from a single image

• Challenge:

Hands and objects are often self-occluded during interactions

4

Related Work

Separate Encoders

One Encoder and Feature Fusion

Hasson et al., 2019

Liu et al., 2021

4

Related Work

Separate Encoders

One Encoder and Feature Fusion

Hasson et al., 2019

Liu et al., 2021

Related Work

Separate Encoders

One Encoder and Feature Fusion

Hasson et al., 2019

Liu et al., 2021

-

Proposed Method

Proposed Method

Feature Extraction Backbone

Interaction Modules

Two separate decoders

1.Feature Extraction Backbone

 single stream backbone -> treats the hand and object both as foreground, competitive in feature learning

 double stream backbone -> large number of parameters, the different feature spaces between backbones

1.Feature Extraction Backbone

- Our backbone keeps the structure of the stage-0, stage-1, and stage-4 layers of the ResNet-50 model unchanged, but adopts independent stage-2 and stage-3 layers for the hand and object.
- The feature maps output by the stage-1 layers are fed into the two sets of stage-2 and stage-3 layers.
- The two sets of feature maps output by the stage-3 layers are fed into the same stage-4 layers.
- Finally, we adopt Feature Pyramid Network (FPN) to combine the features in different scales.

1.Feature Extraction Backbone

- independent stage-2 and stage-3 layers -> regard the hand and object respectively as the sole foreground target
- shared stage-4 layers -> the hand and object features are forced to be in similar feature spaces

2.Interaction Modules

 hand-> non-rigid, flexible, high degree of freedom

- We use the ROIAlign to obtain F^h and F^{oh} from P^h and P^o, according to the hand bounding box.
- And concatenating them along the channel dimension to get F^H.
- Finally, We feed F^H into the Object-to-Hand Enhancement module.

4

2.Interaction Modules

• object-> rigid, and less flexible

- We use the ROIAlign to obtain F^o from P^o, according to the object bounding box, and obtain F^{ho} from P^h, according to the overlapped area between the hand and object bounding boxes.
- Finally, We feed F^o and F^{ho} into the Hand-to-Object Enhancement module.

3.Two separate decoders

• Hand decoder output 2D joints, 3D mesh

Hand pose

3D hand mesh parameterized by MANO model

• Object decoder output 2D control points

21 control points pre-defined on object mesh 6D object pose computed by PNP algorithm

Experiments

Methods	Joint↓]	Mesh↓	cleanser↑	bottle↑	`can↑a	average↑	interaction modules	Methods	Joint↓	Mesh↓	cleanser↑	bottle↑	can↑	average↑
Single-Stream	10.4	10.3	80.1	55.3	46.2	60.5		Single-Stream	10.2	10.0	86.2	62.1	42.3	63.5
Double-Stream	9.7	9.6	82.2	74.1	49.4	68.6	-	Double-Stream	9.5	9.4	91.2	73.3	46.8	70.4
Ours	9.8	9.7	84.1	70.3	48.2	67.5		Ours	8.9	8.7	81.4	87.5	52.2	73.3

- The double-stream backbone works better than the single-stream without adding interaction modules, while our approach achieves close to the double-stream effect by adding only a small number of parameters.
- The performance gain of the double-stream backbone after adopting the interaction modules are quite small, while our approach has a larger improvement.

Thanks for listening

code:https://github.com/lzfff12/HFL-Net