Habitat-Matterport 3D Semantics Dataset

Karmesh Yadav^{1*} Ram Ramrakhya^{2*}

Santhosh Kumar Theophile Gervet⁶ Ramakrishnan^{3*}

John M Turner¹

Aaron Gokaslan⁴

Noah D Maestre¹

Angel X Chang⁵

Dhruv Batra^{1,2}

Alexander Clegg^{1†}

Devendra Singh Chaplot^{1†}

Poster session: TUE-PM-075

Project page: https://aihabitat.org/datasets/hm3d-semantics/

Overview

We introduce HM3DSem, the largest ever open dataset of 3D real-world spaces with densely annotated semantics.

Highlights of HM3DSem:

- 216 scenes with texture annotations
- Pixel-level alignment between semantic & scene meshes
- 14,200+ hours of human effort from 20+ annotators
- Room annotations to enable smart dataset subsampling

Models trained on HM3DSem generalize best across datasets

Motivation

Prior semantically annotated datasets are limited by size / quality.

Habitat-Matterport 3D Semantics

HM3DSem is the largest ever open dataset of 3D real-world spaces with densely annotated semantics.

Annotation pipeline

Artists perform instance-level annotations (~13.5k hours)

- Annotations for architectural elements, objects, wall decorations, etc
- Artists paint unique colors per instance on 3D textures
- Each unique color is mapped to object name + room id

Verification process

Annotators iteratively verify & correct annotations (~640 hours)

- Automated checks
- Manual verification
 - Correct typos and group synonyms
 - Identify painting annotation errors

HM3DSem

Annotations are dense, high-quality, perfectly aligned with 3D meshes (unlike prior work).

HM3DSem

Annotations are dense, high-quality, perfectly aligned with 3D meshes (unlike prior work).

142,646 object instances 1,625 category tags 3,100 regions

Scenes

Diverse distributions over objects, categories, and regions per scene

Regions

Unique Categories

Room labels can be derived from the presence of certain objects.

e.g., bed must be in a bedroom, toilet must be in a bathroom, etc.

Count of Room Type

Room labels can be derived from the presence of certain objects.

e.g., bed must be in a bedroom, toilet must be in a bathroom, etc.

Count of Room Type

Room labels can be derived from the presence of certain objects.

e.g., bed must be in a bedroom, toilet must be in a bathroom, etc.

Count of Room Type

Room labels can be derived from the presence of certain objects.

e.g., bed must be ir must be in a bathro

Annotations can be used to intelligently subsample scenes for various applications

Kitchen-free spaces Commercial / hotel rooms

Scene type

No bedrooms

8

25

Count

12

7

iseum)

Experiments

Task 1: Object detection

Task 2: ObjectGoal Navigation

Task 1: Object detection

Goal: Segment all instances of a pre-defined set of objects

Object categories: [chair, bed, plant, toilet, tv/monitor, sofa]

Task 1: Object detection

Experiment setup

Task 1: Object detection

Training on HM3DSem leads to the best detector

Task 1: Object detection Training on HM3DSem leads to the best detector

Goal: Find an object in a novel environment.

Goal categories: [chair, bed, plant, toilet, tv/monitor, sofa]

Task 2: ObjectNav

Experiment setup

Baseline policies for performing ObjectNav

HM3DSem-trained agents generalize well across datasets

HM3DSem-trained agents generalize well across datasets

ObjectNav performance scales linearly with dataset size

Habitat Challenge 2022

- Uses HM3DSem v0.1 --- 80 train / 20 val / 20 test scenes
- 6 goal categories
 - o chair, couch, plant, bed, toilet, tv
- March 18th, 2022 to August 21st, 2022
- 1022 submissions from 54 teams (150% increase from 2021)

Habitat Challenge 2022

Rank ¢	Participant team 🍦	SPL (↑) ≑	SOFT_SPL (↑) ≑	DISTANCE_TO_GOAL (↑) ¢	SUCCESS (↑) ≑	
1	ByteBOT	0.37	0.40	2.61	0.68	Challenge winner
2	Stretch (Semantic Map + Frontier)	0.34	0.38	3.46	0.60	
3	Finding NIMO (PEANUT)	0.33	0.36	3.00	0.64	
4	BadSeed (PIRLNav)	0.33	0.37	2.22	0.65	
5	Populus A. (0829-1-205600)	0.32	0.37	2.16	0.66	
6	GoodSeed (ProcTHOR - Large)	0.32	0.38	2.58	0.54	1619 in su
7	不怕麻煩的兔女郎(; 甯丹靜)	0.31	0.35	3.40	0.57	acce % ga
8	SkillFusion (AIRI)	0.29	0.35	3.05	0.55	ss!
9	Walle (0825-5-21000)	0.27	0.33	2.78	0.56	
10	OVRL (OVRL v1)	0.27	0.31	2.49	0.60	
11	RUG-Windmill	0.25	0.29	3.75	0.54	
12	Habitat-Web (IL-HD)	0.22	0.26	3.15	0.55	
13	EpsGreedy	0.17	0.22	3.90	0.44	
14	RLNJU	0.17	0.28	4.64	0.30	
15	Host_74441_Team (DDPPO Baseline) B	0.12	0.22	4.31	0.26	Baseline

Conclusions

- HM3DSem is the largest dataset of 3D real-world spaces with densely annotated semantics
- Models trained on HM3DSem generalize well across datasets
- Model performance scales linearly with dataset size
- Check out the HM3DSem ObjectNav challenge!

Habitat-Matterport 3D Semantics Dataset

Poster session: TUE-PM-075

Project page: https://aihabitat.org/datasets/hm3d-semantics/

Meta Al

