

Rethinking Domain Generalization for Face Antispoofing: Separability and Alignment

Yiyou Sun **UW-Madison**

Yaojie Liu Google

Tag: THU-PM-379

Xiaoming Liu Michigan State University Google

Yixuan Li UW-Madison

Wen-Sheng Chu Google

Face Anti-spoofing (FAS) is Important!

Face Recognition System

Attacker

Is it Secure?

Face Anti-spoofing (FAS) is Hard in the Wild

Different Cameras

New Challenges: design algorithm well with domain generalization!

Different Environments

1-min Highlight: Motivation Learns a Domain-invariant Live/Spoof Classifier

- Domain signal is ignored
- Live-to-spoof transition is **inconsistent**

Common Solutions: SSDG (CVPR 2020) / SSAN (CVPR 2022)

- Jia et al., "Single-side domain generalization for face anti-spoofing," CVPR 2020. - Wang et al., "Domain generalization via shuffled style assembly for face anti-spoofing," CVPR 2022.

- Domain signal is leveraged
- Live-to-spoof transition is aligned

SAFAS (Our Solution)

1-min Highlight: Methodology Separability (SupCon) and Alignment (IRM)

Challenge 1: Separability

Supervised Contrastive Learning (SupCon)

Challenge 2: Alignment

Invariant Risk Minimization (IRM)

1-min Highlight: Experiment

(a) Comparison with Baselines (Best Possible Performance)

SSDG-R

Train on OULU/MSU/REPLAY

0000

(c) Visualization of Feature Space

(b) Comparison with Baselines (Upon Convergence)

SAFAS (Ours)

Problem Setting

Training Data

Domain 1

Domain 2

Training Data

Domain 1

Live

Test Data

Domain 3 (NEW)

live?spoof?

Domain 1

• Domain signal is **ignored**

- Jia et al., "Single-side domain generalization for face anti-spoofing," CVPR 2020. - Wang et al., "Domain generalization via shuffled style assembly for face anti-spoofing," CVPR 2022.

Common Solutions: SSDG (CVPR 2020) / SSAN (CVPR 2022)

Our Solution Learns a Domain-invariant Live/Spoof Classifier

- Jia et al., "Single-side domain generalization for face anti-spoofing," CVPR 2020. - Wang et al., "Domain generalization via shuffled style assembly for face anti-spoofing," CVPR 2022.

Domain 2 Domain 2

- Domain signal is leveraged
- Live-to-spoof transition is aligned

SAFAS (Our Solution)

How to Achieve the Ideal Feature Space? **Two Key Challenges**

Original Feature Space

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Live training Domain e⁽¹⁾/e⁽²⁾/e⁽³⁾ 🗱 🗱 🛠 Spoof trainging domain e⁽¹⁾/e⁽²⁾/e⁽³⁾

Nethodology

Challenge 1: Feature's Separability

Feature Space

Supervised Contrastive Learning (SupCon)

 $\mathcal{P}(\mathbf{x})$ contains features of samples with same live/spoof label and domain as x.

 $\mathcal{N}(\mathbf{x})$ contains features of samples except x.

 $\mathcal{L}_{\phi}(\mathbf{x}; au,\mathcal{P}(\mathbf{x}),\mathcal{N}(\mathbf{x})) = -rac{1}{|\mathcal{P}(\mathbf{x})|}_{\mathbf{z}}$

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C. and Krishnan, D. Supervised contrastive learning. NeurIPS 2020

$$\sum_{\mathbf{z}^+ \in \mathcal{P}(\mathbf{x})} \log \frac{\exp \left(\mathbf{z}^\top \cdot \mathbf{z}^+ / \tau\right)}{\sum_{\mathbf{z}^- \in \mathcal{N}(\mathbf{x})} \exp \left(\mathbf{z}^\top \cdot \mathbf{z}^- / \tau\right)}$$

Supervised Contrastive Learning (SupCon) Enhances the Separability

No SupCon

Live training Domain CASIA/MSU/REPLAY

00

With SupCon (More Separable between domains)

X X X Spoof trainging domain CASIA/MSU/REPLAY

Challenge 2: Feature's Alignment

Challenge 2: Align Live/spoof Direction

O O Live training Domain e⁽¹⁾/e⁽²⁾/e⁽³⁾ 2000 Spoof trainging domain e⁽¹⁾/e⁽²⁾/e⁽³⁾

Alignment Target: Invariant Risk Minimization (IRM)

Notations:

- Environments:
- Training dataset:
- Risk in Env. e:

Objective:

$$egin{split} \mathcal{E} = \left\{ e^{(1)}, e^{(2)}, \ldots, e^{E}
ight\} \ \mathcal{D} = \left\{ (\mathbf{x}_{i}, y_{i}, e_{i})
ight\}_{i=1}^{N} \end{split}$$

$$\mathcal{R}^e(\phi,eta)\doteq\mathbb{E}_{(\mathbf{x}_i,y_i,e_i=e)\sim\mathcal{D}}\ell(f(\mathbf{x}),y)$$

$$(b, \beta^*) \to \mathcal{L}_{IRM}$$

 $\beta^* \in \arg\min_{\varphi} \mathcal{R}^e(\phi, \beta) \quad \forall e \in \mathcal{E},$

Alignment Target: Invariant Risk Minimization (IRM)

Notations:

- Environments:
- Training dataset:
- Risk in Env. e:

Objective:

$$\min_{\phi,\beta^*} \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \mathcal{R}^e(\phi,\beta^*) \to \text{ ERM Loss}$$

'

$$egin{split} \mathcal{E} = \left\{ e^{(1)}, e^{(2)}, \ldots, e^E
ight\} \ \mathcal{D} = \left\{ (\mathbf{x}_i, y_i, e_i)
ight\}_{i=1}^N \end{split}$$

 $\mathcal{R}^e(\phi,eta)\doteq\mathbb{E}_{(\mathbf{x}_i,y_i,e_i=e)\sim\mathcal{D}}\ell(f(\mathbf{x}),y)$

What if the constraint is unsatisfied?

 $\min_{\phi,\beta^*} \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \mathcal{R}^e(\phi,\beta^*) \to \mathcal{L}_{IRM}$ $\begin{array}{l} \beta^* \in \arg\min \mathcal{R}^e(\phi,\beta) \quad \forall e \in \mathcal{E}, \\ \beta \end{array}$ s.t.

What if the constraint is unsatisfied?

Result: The feature in different domains can be arbitrarily shuffled. Therefore, **no alignment!**

What if the constraint is satisfied?

 $\min_{\phi,\beta^*} \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \mathcal{R}^e(\phi,\beta^*) \to \mathcal{L}_{IRM}$ s.t. $\beta^* \in \arg\min_{\varphi} \mathcal{R}^e(\phi, \beta) \quad \forall e \in \mathcal{E},$ $\beta^{*} = \arg \min_{\beta} \mathcal{R}^{e^{(1)}}(\phi, \beta)$ $\beta^{*} = \arg \min_{\beta} \mathcal{R}^{e^{(2)}}(\phi, \beta)$ $\beta^{*} = \arg \min_{\beta} \mathcal{R}^{e^{(3)}}(\phi, \beta)$ β

Result: Live-to-spoof transition is **aligned**!

Optimize Invariant Risk Minimization (IRM) by Projected Gradient Descent (PGD)

Theorem 1. (*PG-IRM objective*) For all $\alpha \in (0, 1)$, the *IRI* objective is equivalent to the following objective:

$$\min_{\substack{\phi,\beta_{e^{(1)}},\ldots,\beta_{e^{(E)}}}} \frac{1}{|\mathcal{E}|} \sum_{e \in \mathcal{E}} \mathcal{R}^{e}(\phi,\beta_{e}) \to \mathcal{L}_{align} \qquad (a)$$

s.t. $\forall e \in \mathcal{E}, \exists \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall e \in \mathcal{E}, \exists \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall e \in \mathcal{E}, \exists \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall e \in \mathcal{E}, \forall e \in \mathcal{E}, \forall \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall e \in \mathcal{E}, \forall \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall e \in \mathcal{E}, \forall \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall \beta_{e} \in \mathcal{E}, \forall \beta_{e} \in \mathcal{E}, \forall \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall \beta_{e} \in \mathcal{E}, \forall \beta_{e} \in \mathcal{E}, \forall \beta_{e} \in \Omega_{e}(\phi), \beta_{e} \in \Upsilon_{\alpha}(\beta_{e}), \forall \beta_{e} \in \mathcal{E}, \forall \beta_{e} \in \mathcal{E$

where the parametric constrained set for each environmer is simplified as $\Omega_e(\phi) = \arg \min_{\beta} \mathcal{R}^e(\phi, \beta)$, and we define the α -adjacency set:

$$\begin{split} \Gamma_{\alpha}(\beta_{e}) &= \{ v | \max_{e' \in \mathcal{E} \setminus e} \min_{\beta_{e'} \in \Omega_{e'}(\phi)} \| v - \beta_{e'} \|_{2} \\ &\leq \alpha \max_{e' \in \mathcal{E} \setminus e} \min_{\beta_{e'} \in \Omega_{e'}(\phi)} \| \beta_{e} - \beta_{e'} \|_{2} \} \end{split}$$

More details are in the paper!

М	Algorithm 2 PG-IRM
	Initialize $\phi, \beta_{e^{(1)}},, \beta_{e^{(E)}}$, learning rate γ , alignment pa-
	rameter α , alignment starting epoch T_a .
5)	for t in 0, 1,, do
-	Run forward pass and calculate the gradient.
	for $e \in \mathcal{E}$ do
	$ ilde{eta}_{e}^{t+1}=eta_{e}^{t}-\gamma abla_{eta_{e}^{t}}\mathcal{L}_{PG\text{-}IRM}$
nt	$\alpha' := 1 - 1_{t > T_a} (1 - \alpha)$
ne	select $\beta_{\bar{e}}^t$ with $\bar{e} = \operatorname{argmax} \ \tilde{\beta}_{e}^{t+1} - \beta_{e'}^t\ _2$
	$e' \in \mathcal{E} ackslash e$
	$\beta_e^{t+1} = \alpha' \tilde{\beta}_e^{t+1} + (1 - \alpha') \beta_{\bar{e}}^t$
6)	end for
0)	Update $\phi^{t+1} = \phi^t - \gamma \nabla_{\phi^t} \mathcal{L}_{PG-IRM}$.
7)	end for

Experiment

Cross-Domain FAS Experiment Settings

Model

OULU

CASIA

MSU

Replay

Leave-one-out protocol: Train on three, test on one.

Our Framework Establishes the Competitive Performance

- Jia et al., "Single-side domain generalization for face anti-spoofing," CVPR 2020. - Wang et al., "Domain generalization via shuffled style assembly for face anti-spoofing," CVPR 2022. - Wang et al., "PatchNet: A simple face anti-spoofing framework via fine-grained patch recognition," CVPR 2022.

- Jia et al., "Single-side domain generalization for face anti-spoofing," CVPR 2020. - Wang et al., "Domain generalization via shuffled style assembly for face anti-spoofing," CVPR 2022. - Wang et al., "PatchNet: A simple face anti-spoofing framework via fine-grained patch recognition," CVPR 2022.

OCM→I

Visualization on Feature Space

Live samples from CASIA/MSU/REPLAY/OULU X X X Spoof samples from CASIA/MSU/REPLAY/OULU - - -0000

Live-vs-spoof hyperplane

Summary

1. We offer a new perspective for cross-domain FAS by designing the feature space based on **separability** and **alignment**.

 We first exploit the domain-variant representation learning by combining contrastive learning and optimizing invariant risk minimization (IRM) through the projected gradient algorithm for cross-domain FAS.

Thank you!

Code available at https://github.com/sunyiyou/SAFAS.

