

Deep Learning of Partial Graph Matching via Differentiable Top-K

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, Junchi Yan

TUE-PM-205

饮水思源·爱国荣校

In this paper, we focus on **Partial Graph Matching** problem.

Contributions:

- Propose a top-k formulation and a differentiable top-k-based framework;
- Devise an attention-based graph neural network;
- Collect and remake a new visual graph matching benchmark named IMC-PT-SparseGM.

MP-hard graph matching problem:

Partial graph matching:

- Unavoidable due to the errors in keypoint detectors and occlusion of objects.
- In existing affinity-maximization graph matching pipeline, this problem is less handled. Also, an 'intersection' setting is usually adopted.

Motivation

- Existing partial matching handling (PMH) methods: thresholding, adding dummy rows and columns. **Inflexible**.
- Discard the matchings with small matching confidence. —> Preserve the matchings with top-k confidence values.
- k can be estimated by evaluating the graph-level similarity.

NGMv2-noPMH: precision:16/25 recall:16/20

NGMv2-AFAT: precision:18/21 recall:18/20

Overview of AFA-I

AFA-U: Unified Bipartite Graph Modeling

Overview of AFA-U

Train GM networks and AFA in different stages.

- Stage1: Train the GM network (using ground truth k)
- Stage2: Train AFA modules
- Stage3: Jointly train the GM network and AFA modules
- Sparse implementation of quadratic GM network NGMv2

Table 3. The GPU memory cost (GB) of matching two graphs (batch size=1) w.r.t. dense and sparse NGMv2. The original dense version exceeds memory limit of RTX 3090 (24GB) at 110 nodes, whereas our sparse version scales-up more efficiently.

Number of Nodes	40	50	60	70	80	90	100	110
Dense NGMv2 [44]	2.82	3.05	4.42	6.26	8.80	12.48	17.59	<u>26.06</u>
Sparse NGMv2 (ours)	2.73	2.73	2.74	2.75	2.75	2.76	2.77	2.78

We provide a new visual graph matching benchmark IMC-PT-SparseGM, based on the novel stereo benchmark Image Matching Challenge PhotoTourism (IMC-PT) 2020.

a) 3D point labels (blue) and anchors (red)	a)	3D	point	labels	(blue)	and	anchors	(red)	
---	----	----	-------	--------	--------	-----	---------	-------	--

(b) Examples (raw images with built graphs) for visual graph matching

Figure 6. The 3D points in (a) are detected by colmap [31, 32] which are available as labels in IMC-PT [18]. The blue points denote our selected anchors, based on which our IMC-PT SparseGM-50 is built, as shown in (b). The lines connecting anchors are the edges we build through Delaunay triangulation.

Table 1. Visual GM datasets. "partial rate" means the mean percentage of occluded keypoints w.r.t. the universe of all keypoints.

dataset name	# images	avg # nodes	# universe	partial rate
Willow Object Class [6]	404	10	10	0.0%
Pascal VOC Keypoint [5]	8702	9.07	6 to 23	28.5%
IMC-PT-SparseGM-50 (ours)	25667	21.36	50	57.3%
IMC-PT-SparseGM-100 (ours)	25667	44.48	100	55.5%

- Unfiltered setting
 - 2 GM backbone
 - NGMv2: SOTA quadratic matching network
 - GCAN: SOTA linear matching network
 - Our PMH method: Attention-Fused Aggregation with Top-k-GM (AFAT)

Table 2. F1 (%) on Pascal VOC Keypoints (unfiltered). PMH means Partial Matching Handling. Our methods are marked as gray.

GM Network	PMH	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
ZACR [43]	ZACR [43]	12.2	31.8	31.7	23.0	35.0	28.3	21.8	32.6	19.6	23.8	33.8	29.9	28.8	21.4	10.8	39.0	26.9	15.5	55.8	82.5	30.2
PCA-GM [44]	None	35.6	60.3	43.7	34.5	81.5	54.9	30.1	47.8	30.4	46.4	43.9	44.5	46.1	52.4	29.4	78.7	40.7	30.4	58.6	81.2	48.6
BBGM [29]	LPMP [38]	42.2	66.7	54.9	46.1	85.7	66.5	39.8	60.3	38.9	65.1	60.1	58.4	58.1	62.4	41.3	96.1	53.5	26.3	75.9	82.6	59.0
	None	45.5	65.3	55.3	45.8	88.4	64.3	45.9	58.6	43.3	59.1	39.2	55.7	58.0	65.3	44.4	95.4	50.3	41.2	72.4	81.8	58.8
	Thresholding	48.3	65.4	55.3	48.6	87.6	63.0	51.1	61.1	39.6	63.3	33.6	59.2	59.3	63.4	46.9	95.2	53.5	45.5	73.4	81.4	59.4 ± 0.4
NGMv2 [45]	Dummy node	44.7	61.9	57.1	41.9	83.9	63.9	54.1	60.8	40.5	64.2	36.2	60.6	60.8	61.9	48.7	91.2	56.2	37.4	63.2	82.2	$58.6 {\pm} 0.5$
	AFAT-U (ours)	45.7	67.7	57.3	44.9	90.1	65.5	49.9	59.3	44.0	62.0	54.9	58.4	58.6	63.8	45.9	94.8	50.9	37.3	74.2	82.8	60.2 ±0.4
	AFAT-I (ours)	45.0	67.3	55.9	45.6	90.3	64.6	48.7	58.0	44.7	60.2	54.8	57.2	57.5	63.4	45.2	95.3	49.3	41.6	73.6	82.4	$59.9{\pm}0.3$
	Dummy node	46.3	67.7	57.4	45.0	87.1	64.8	57.5	61.2	40.8	61.6	37.3	59.9	59.2	64.6	49.7	95.1	54.5	28.5	77.9	83.1	59.7±0.3
GCAN [17]	AFAT-U (ours)	47.1	70.8	58.1	45.8	90.8	66.5	49.6	58.8	50.6	64.6	47.2	60.5	62.3	65.7	46.3	95.4	52.7	47.4	74.2	83.8	62.0 ±0.2
	AFAT-I (ours)	46.1	69.9	56.1	46.6	90.7	66.1	48.1	57.9	49.9	63.9	50.4	59.0	61.6	65.0	44.7	95.5	50.9	49.2	74.0	83.8	61.6 ± 0.3

Datase	Willow Object Class							IMC-PT-Spar	seGM (50 anchors)		IMC-PT-SparseGM (100 anchors)				
GM Network	PMH	car	duck	face	mbike	bottle	mean	reichstag	sacre_coeur	st_peters_square	mean	reichstag	sacre_coeur	st_peters_square	mean
ZACR [43]	ZACR [43]	47.3	44.7	77.7	39.9	53.6	52.6	72.1	33.7	29.5	45.1	39.4	33.1	30.4	34.3
PCA-GM [44]	None	55.8	56.5	81.2	46.4	58.1	59.6	83.4	47.5	58.5	63.1	70.7	43.1	58.8	57.5
BBGM [29]	LPMP [38]	65.1	60.7	85.5	71.6	65.5	69.7	85.4	55.1	59.3	66.6	88.1	55.0	56.4	66.5
	None	78.9	66.6	84.3	63.1	76.0	73.8	90.8	55.9	64.3	70.3	78.4	54.9	69.3	67.6
	Thresholding	86.8	74.5	91.2	71.0	83.8	$81.4{\pm}0.2$	91.4	56.8	65.8	$71.3 {\pm} 0.3$	80.3	56.9	71.6	$69.6 {\pm} 0.3$
NGMv2 [45]	Dummy node	83.3	69.7	95.7	68.8	86.7	$80.8{\pm}0.4$	88.5	56.1	63.0	69.2 ± 0.5	80.0	57.0	71.3	69.5 ± 0.3
	AFAT-U(ours)	82.6	74.5	90.6	73.9	87.0	$81.7{\pm}0.5$	90.5	58.7	66.9	$72.0 {\pm} 0.3$	81.7	57.0	72.2	70.3 ±0.2
	AFAT-I(ours)	84.6	75.7	92.0	74.5	88.6	83.1±0.2	92.3	58.7	66.7	72.8 ±0.4	82.0	57.0	71.4	70.1 ± 0.3
	Dummy node	74.8	75.7	92.8	77.1	83.5	80.8 ± 0.2	87.2	55.1	63.0	$68.4 {\pm} 0.5$	80.4	55.7	72.8	69.6±0.4
GCAN [17]	AFAT-U(ours)	80.1	78.0	90.6	76.0	87.0	$82.3 {\pm} 0.3$	86.9	59.4	67.1	$71.1 {\pm} 0.4$	82.6	58.2	73.8	71.5 ±0.2
	AFAT-I(ours)	82.2	77.7	92.7	77.2	88.6	83.7±0.3	91.0	60.3	67.3	72.9 ±0.6	82.7	57.8	72.4	70.9 ± 0.4

Table 4. F1 (%) on Willow Object Class (+random outliers) and IMC-PT-SparseGM (50/100 anchors). Our methods are marked as gray.

Table 9. F1 (%) on SPair-71k (unfiltered setting). Our methods are marked as gray.

GM Network	PMH	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	dog	horse	mbike	person	plant	sheep	train	tv	mean
ZACR	ZACR	32.9	33.3	45.7	24.6	62.0	13.5	36.0	56.2	17.4	47.5	32.7	19.0	40.7	42.7	37.3	34.8	52.5	60.0	38.3
PCA-GM	None	36.5	25.6	48.9	24.7	50.7	29.1	19.2	54.6	30.1	39.1	42.9	34.0	31.3	27.1	70.5	31.1	56.6	75.2	40.4
BBGM	None	42.9	43.8	65.3	34.6	62.6	47.6	25.6	68.0	38.6	62.0	57.8	42.8	44.1	36.0	83.2	45.4	86.7	90.3	54.3
	None	45.4	42.3	61.0	31.2	62.2	53.3	34.2	65.3	37.0	59.5	54.7	41.3	44.8	38.9	77.5	44.2	77.8	89.9	53.4
	Thresholding	50.2	42.9	63.4	29.9	62.1	53.9	34.8	65.7	37.3	62.7	56.1	43.8	45.7	41.8	77.1	45.2	79.0	90.4	$54.6 {\pm} 0.5$
Ngmv2	Dummy node	47.7	41.6	62.1	30.3	59.0	49.7	27.4	68.3	33.9	62.4	57.3	46.7	46.4	42.7	78.7	43.5	80.5	89.5	$53.8 {\pm} 0.4$
8	AFAT-U(ours)	50.3	43.5	63.8	32.4	59.0	60.1	39.7	68.6	36.1	63.6	56.5	46.3	51.4	43.3	77.0	51.2	81.1	89.4	56.3 ± 0.4
	AFAT-I(ours)	50.4	43.6	63.9	32.1	61.2	58.5	38.0	68.4	35.7	62.7	56.4	47.7	51.9	44.3	78.5	50.7	79.2	91.2	56.4 ±0.6
	Dummy node	49.0	41.3	64.0	30.3	57.3	55.0	37.4	64.8	36.6	63.0	58.0	44.4	46.4	42.6	68.4	42.3	83.2	91.9	54.2 ± 0.3
GCAN	AFAT-U(ours)	46.7	43.3	65.8	33.3	61.5	54.9	35.2	68.4	37.7	59.9	56.0	47.6	47.2	43.5	80.3	47.7	83.8	89.0	55.7±0.4
	AFAT-I(ours)	46.8	44.3	65.9	32.4	61.5	53.8	33.7	68.4	38.1	60.1	56.3	47.9	48.3	43.8	81.2	48.4	82.9	88.0	55.7±0.4

Necessity of learning in top-k-GM

Table 6. Ablation study addressing the necessity of learning. We report mean F1 (%), assuming that the ground truth k is given.

I I I I I I	())	8	0	8	
Dataset	Solver	Alg. 1 in test	Train	Alg. 1 in train	F1
	RRWM	×	X	×	20.3
	RRWM	✓	×	×	19.4
PascalVOC	NGMv2	✓ <i>✓</i>	\checkmark	×	60.7
	NGMv2	✓ ✓	\checkmark	\checkmark	62.3
	RRWM	×	X	×	20.1
	RRWM	 ✓ 	×	×	18.9
WillowObject	NGMv2	✓	\checkmark	×	85.2
	NGMv2	✓ ✓	\checkmark	\checkmark	85.5
	RRWM	×	X	×	39.6
IMC-PT-	RRWM	1	×	×	39.1
SparseGM-50	NGMv2	 ✓ 	\checkmark	×	72.3
	NGMv2	✓	\checkmark	\checkmark	73.6
	RRWM	×	X	×	34.6
IMC-PT-	RRWM	✓	×	×	34.0
SparseGM-100	NGMv2	 ✓ 	\checkmark	×	70.7
	NGMv2	 ✓ 	\checkmark	\checkmark	71.8

Ablation Study

Impact of the accuracy of k prediction

We propose a top-k-based framework to tackle the partial graph matching problem, which is ubiquitous in vision.

A new benchmark based on IMC-PT 2020, which is better suited for partial graph matching problem is remade and released.

Extensive experimental results on both classic and our new benchmarks show the effectiveness and significance of our work.

