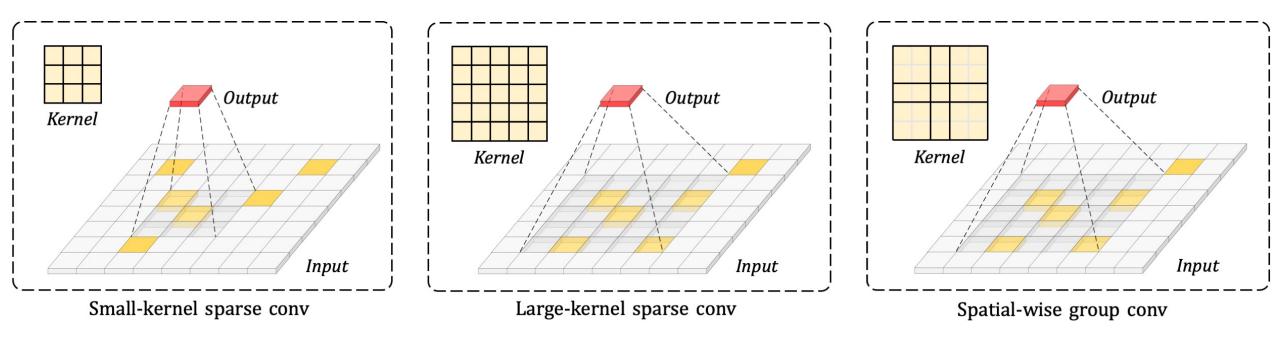
LargeKernel3D


Scaling up Kernels in 3D Sparse CNNs

Yukang Chen¹, Jianhui Liu², Xiangyu Zhang³, Xiaojuan Qi², Jiaya Jia¹

¹Chinese University of Hong Kong, ²University of Hong Kong, ³MEGVII Technology

https://github.com/dvlab-research/LargeKernel3D

• 1. Motivation

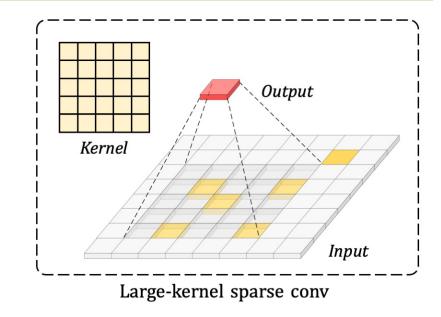
• Small-kernel sparse conv:

Limited receptive field - not only by kernel size, but also by **feature disconnection**.

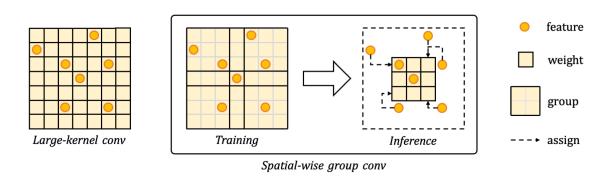
• Large-kernel sparse conv:

Large parameters and computation cost - 3³ --> 7³

• Spatial-wise group conv: Large receptive field & limited cost.


LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs

- 1. Motivation
- Issues in plain Large-kernel sparse conv
- 1. Efficiency issue

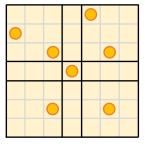

Large amount of parameters and computation cost

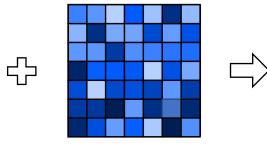
- *e.g.* kernels from 3^3 to 7^3 , from 27x to 343x
- 2. Optimization issue
 - Large model size v.s. limited sparse data.
 - Amount: Point cloud data amounts are limited, (compared large-scale datasets on 2D vision tasks).
 - Sparsity: Not all weights are activated each time.
- Results of MinkowskiNet-34 on ScanNetv2 semantic segmentation.

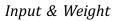
Method	Params	FLOPs	Runtime	mIoU (%)
Baseline (Kernel 3 ³)	37.9 M	182.8 G	108 ms	71.7
Baseline (Kernel 5^3)	170.3 M	537.5 G	212 ms	70.7
Baseline (Kernel 7 ³)	465.0 M	1089.5 G	487 ms	68.6

• 2. Our solution

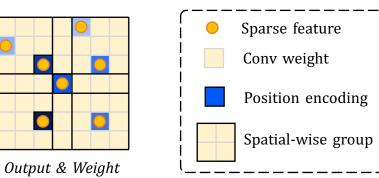
Method	Params	FLOPs	Runtime	mIoU (%)
Baseline (Kernel 3^3)	37.9 M	182.8 G	108 ms	71.7
Baseline (Kernel 5^3)	170.3 M	537.5 G	212 ms	70.7
Baseline (Kernel 7^3)	465.0 M	1089.5 G	487 ms	68.6
Dilated Conv [4]	37.9 M	100.1 G	98 ms	64.6
Pooling + Dilated Conv	37.9 M	183.2 G	115 ms	nan
Spatial group conv [61]	37.9 M	127.2 G	96 ms	70.0
Deformable Conv [40]	42.5 M	250.1 G	238 ms	70.4
SW-LKNet-34	45.3 M	209.3 G	152 ms	73.2


• Efficiency:


Training: 7x7 kernel (spatial weight sharing).


Inference: 7x7 indice assign \rightarrow Atomic Add \rightarrow 3x3 conv.

• Performance:


Not all kernel weights are optimized during training + data insufficient. Weight sharing --> better learning. Comparison to other related convolutional schemes. • 2. Our solution

Position Encodings

Kernel Size		3×3×3	$5 \times 5 \times 5$	7×7×7	9×9×9	11×11×11	13×13×13	15×15×15	17×17×17
Plain	Params	6.9 K	32.0 K	87.8 K	186.6 K	340.7 K	562.4 K	864.0 K	1.3 M
	Latency	2.5 ms	4.2 ms	8.9 ms	17.5 ms	31.1 ms	55.1 ms	81.1 ms	106.3 ms
Ours	Params	-	8.9 K	12.4 K	18.6 K	28.2 K	42.1 K	60.9 K	85.5 K
Ours	Latency	-	3.4 ms	3.9 ms	4.8 ms	6.2 ms	8.4 ms	11.4 ms	15.8 ms

• 3. Main results

Table 6: Comparison with other methods on nuScenes test split.

Method	NDS	mAP	Car	Truck	Bus	Trailer	C.V.	Ped	Mot	Byc	T.C.	Bar
PointPillars 30	45.3	30.5	68.4	23.0	28.2	23.4	4.1	59.7	27.4	1.1	30.8	38.9
3DSSD 62	56.4	42.6	81.2	47.2	61.4	30.5	12.6	70.2	36.0	8.6	31.1	47.9
CBGS 68	63.3	52.8	81.1	48.5	54.9	42.9	10.5	80.1	51.5	22.3	70.9	65.7
CenterPoint [63]	65.5	58.0	84.6	51.0	60.2	53.2	17.5	83.4	53.7	28.7	76.7	70.9
HotSpotNet 6	66.0	59.3	83.1	50.9	56.4	53.3	23.0	81.3	63.5	36.6	73.0	71.6
CVCNET 5	66.6	58.2	82.6	49.5	59.4	51.1	16.2	83.0	61.8	38.8	69.7	69.7
TransFusion [2]	70.2	65.5	86.2	56.7	66.3	58.8	28.2	86.1	68.3	44.2	82.0	78.2
Focals Conv 9	70.0	63.8	86.7	56.3	67.7	59.5	23.8	87.5	64.5	36.3	81.4	74.1
Focals Conv-F [‡] 9	73.6	70.1	87.5	60.0	69.9	64.0	32.6	89.0	81.1	59.2	85.5	71.8
LargeKernel3D	70.5	65.3	85.9	55.3	66.2	60.2	26.8	85.6	72.5	46.6	80.0	74.3
LargeKernel3D [‡]	72.8	68.8	87.3	59.1	68.5	65.6	30.2	88.3	77.8	53.5	82.4	75.0
LargeKernel3D-F [‡]	74.2	71.1	88.1	60.3	69.1	66.5	34.3	89.6	82.0	60.3	85.7	75.5

[‡] Flipping and rotation testing-time augmentations.

- Effective on both 3D semantic segmentation and object detection.
- Semantic segmentation: ScanNetv2.
- Object Detection: KITTI, nuScenes, Waymo.

	n ScanNetv2 mIoU on 3D
semantic segmentation.	[†] Sliding-window testing.

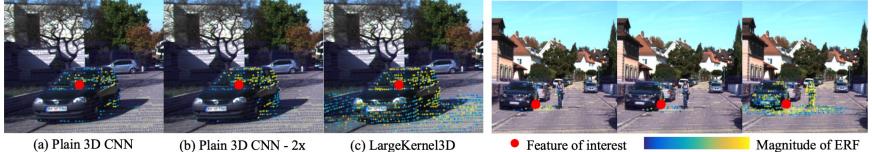

val	test
-	450
	45.8
53.5	55.7
-	64.5
61.0	66.6
63.5	66.6
69.2	68.6
-	68.8
70.6	-
72.1	-
69.3	72.5
-	73.4
74.3	73.7
71.7	-
73.2	73.9
	61.0 63.5 69.2 - 70.6 72.1 69.3 - 74.3 71.7

Table 6: Comparison on KITTI *val* split in AP_{3D} in Recall 11 for the *Car* category.

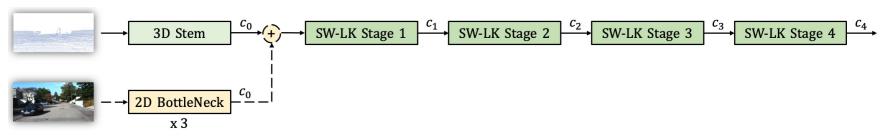
In Recall 11 101 the Ca	ir calego	ny.	
Method	Easy	Mod.	Hard
VoxelNet [39]	81.97	65.46	62.85
PointPillars [28]	86.62	76.06	68.91
SECOND [55]	88.61	78.62	77.22
Point R-CNN [45]	88.88	78.63	77.38
Part- A^2 [47]	89.47	79.47	78.54
3DSSD [57]	89.71	79.45	78.67
Pointformer [36]	90.05	79.65	78.89
SA-SSD [22]	90.15	79.91	78.78
PV-RCNN [46]	89.35	83.69	78.70
VoTr-TSD [35]	89.04	84.04	78.68
Pyramid-PV [34]	89.37	84.38	78.84
Focals Conv [7]	89.52	84.93	79.18
Voxel R-CNN [12]	89.41	84.52	78.93
SW-LKNet	89.52	85.07	79.32

LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs

• 3. Main results

(a) Plain 3D CNN (b) Plain 3D CNN - 2x (c) LargeKernel3D • Feature of interest

Table 4: Improvements over various kernel sizes on SW-LKNet upon CenterPoint and Waymo $\frac{1}{5}$.


Kernel	Runtime	Veh. L1	Veh. L2	Ped. L1	Ped. L2	Cyc. L1	Cyc. L2
3^{3}	109 ms	70.90	62.86	71.46	63.50	69.06	66.52
7^{3}	124 ms	71.87	63.80	71.66	63.73	70.40	67.82
11^{3}	145 ms	72.24	64.20	71.83	63.87	70.19	68.29
13^{3}	156 ms	72.46	64.35	73.71	65.81	70.85	68.25
15^{3}	168 ms	72.71	64.65	73.81	65.76	70.83	68.21
17^{3}	175 ms	73.12 (+2.22)	65.03 (+2.17)	74.28 (+2.82)	65.92 (+2.42)	71.18 (+2.12)	68.42 (+1.90)

- Larger Receptive fields than plain 3D CNN and its 2x deep version. ٠
- Scalable to 17x17x17 on the large-scale Waymo datasets. ٠

• 3. Main results

	Method					Metrics									
	Date	Name	Modalities	Map data	External data	mAP	mATE (m)	mASE (1-IOU)	mAOE (rad)	mAVE (m/s)	mAAE (1-acc)	NDS	PKL *	FPS (Hz)	Stats
			Any -	All -	All 👻										
>	2022-06-03	BEVFusion-e	Camera, Lidar	no	no	0.750	0.242	0.227	0.320	0.222	0.130	0.761	0.518	n/a	îĭÎ
>	2022-01-13	FusionVPE	Camera, Lidar	no	no	0.733	0.235	0.227	0.284	0.243	0.128	0.755	0.529	n/a	îĭÎ
>	2021-05-25	Centerpoint-Fusion	Camera, Lidar, Rada	no	yes	0.724	0.237	0.227	0.318	0.211	0.133	0.749	0.491	n/a	îĭÎ
>	2022-06-16	LargeKernel-F	Camera, Lidar	no	no	0.711	0.236	0.228	0.298	0.241	0.131	0.742	0.555	n/a	îîÎ
>	2021-12-29	PAI3D	Camera, Lidar	no	no	0.714	0.245	0.233	0.308	0.233	0.131	0.742	0.535	n/a	âÂ
>	2022-05-02	BEVFusion	Camera, Lidar	no	no	0.702	0.261	0.239	0.329	0.260	0.134	0.729	0.583	n/a	âÂ
>	2022-05-30	LargeKernel-L	Lidar	no	no	0.688	0.244	0.230	0.312	0.241	0.132	0.728	0.581	n/a	âÂ

- 1st Lidar, 4th multi-modal.
- Single-model results.

Reference

[1] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with submanifold sparse convolutional networks. In CVPR, pages 9224–9232, 2018.

[2] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: pointvoxel feature set abstraction for 3d object detection. In CVPR, pages 10526–10535, 2020.

[3] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel R-CNN: towards high performance voxel-based 3d object detection. In AAAI, pages 1201–1209, 2021.

[4] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Centerbased 3d object detection and tracking. In CVPR, pages 11784–11793, 2021.

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The KITTI dataset. Int. J. Robotics Res., 32(11):1231–1237, 2013.

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,

Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In CVPR, pages 11618–11628, 2020.

Yukang Chen

- Third-year Ph.D student in CUHK
- Supervised by Jiaya Jia
- Research in Efficient Computer Vision
 - AutoML, Autonomous driving, Multi-modality
- More about me
 - <u>https://yukangchen.com</u>
 - <u>https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en</u>

• Thanks!