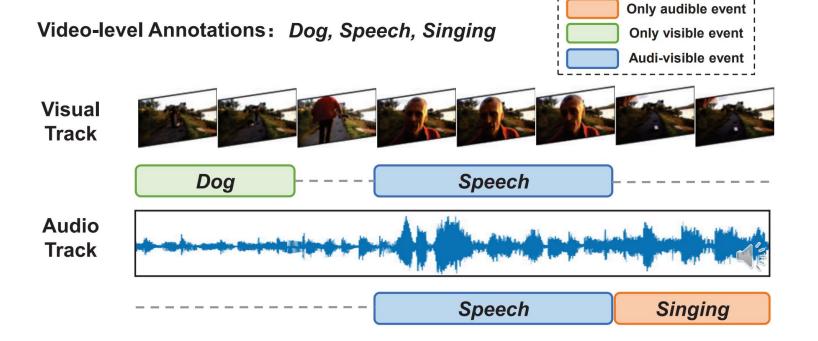


Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio-Visual Event Perception

Junyu Gao, Mengyuan Chen, Changsheng Xu

State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences Peng Cheng Laboratory

2023-06



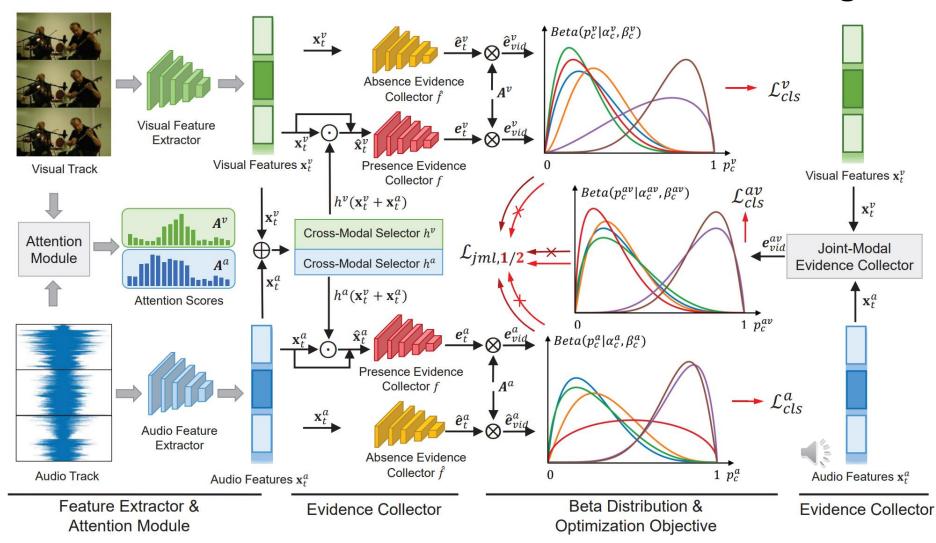
Introduction

Weakly-supervised Audio-Visual Event Perception

 With only video-level annotations, weakly-supervised audio-visual event perception (WS-AVEP) aims to predict the temporal boundaries of various only audible (in orange), only visible (in green), or audi-visible (in blue) events in a video.

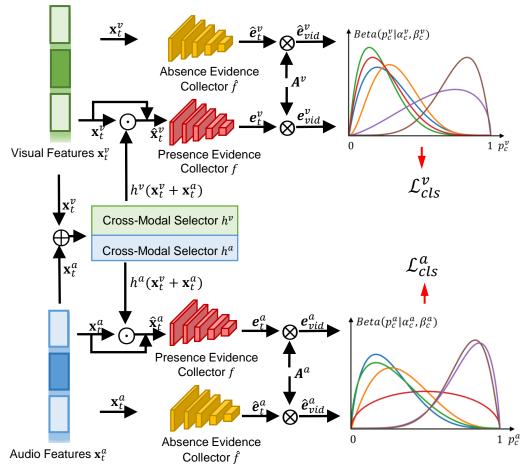
Introduction

Two main pipelines of WS-AVEP


- > AVE: Events are all simultaneously audible and visible.
- AVVP: Events are categorized into only audible, only visible, or audivisible ones.
- State-of-the-arts methods can only achieve significant performance in one single WS-AVEP setting, showing that current methods are in a dilemma of making full use of both uni-modal and cross-modal information.

/	Method Task	CMBS [61]	JoMoLD [6]	Ours
	AVVP [52]	51.7	57.3	60.1
ן	AVE [53]	74.2	71.8	74.8

The modality itself should provide ample presence evidence of this event, while the other complementary modality is encouraged to afford the absence evidence as a reference signal.


Method

Cross-modal Presence-absence Evidence Learning

Method

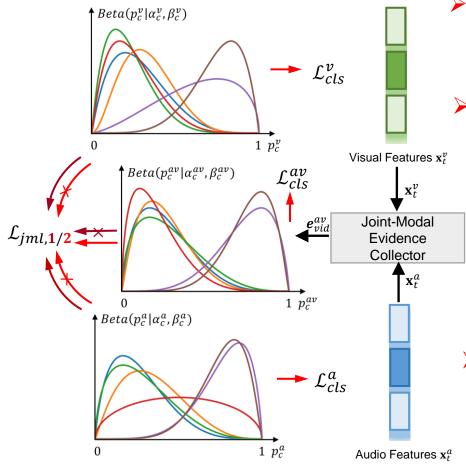
Presence-absence Evidence Collector

Presence evidence

 $e_{t,c}^m = g\left(f_c(\mathbf{x}_t^m; \boldsymbol{\theta}_1)\right)$

Absence evidence

$$\hat{e}_{t,c}^{m} = g\left(\hat{f}_{c}(\hat{\mathbf{x}}_{t}^{m};\boldsymbol{\theta}_{2})\right),$$
$$\hat{\mathbf{x}}_{t}^{m} = \mathbf{x}_{t}^{m} \odot \left(h^{m}(\mathbf{x}_{t}^{m} + \mathbf{x}_{t}^{\hat{m}};\boldsymbol{\theta}_{3}^{m}) + \mathbf{1})\right)$$


Loss function

$$\operatorname{Beta}(p_c | \alpha_c, \beta_c) = \frac{1}{B(\alpha_c, \beta_c)} p_c^{\alpha_c - 1} (1 - p_c)^{\beta_c - 1}$$
$$\mathcal{L}_{cls}^m = \int \left[\sum_{c=1}^C -y_c^m \log(p_c) \right] \operatorname{Beta}(p_c | \alpha_c, \beta_c) dp$$

$$= \sum_{c=1}^{C} \left[\psi \left(\alpha_c + \beta_c \right) - \psi \left(y_c^m \alpha_c + (1 - y_c^m) \beta_c \right) \right]$$

Method

Joint-modal Mutual Learning

Video-level presence/absence evidence $e_{vid,c}^{av}, \hat{e}_{vid,c}^{av} = \sum A_{t,c}^{av} \cdot g(f_c^{av}(\mathbf{x}_t^a + \mathbf{x}_t^v; \boldsymbol{\theta}_4))$ **Cross-modal fusion** $p_c^m = \frac{e_c^m + 1}{e^m + \hat{e}^m + 2}, \quad u_c^m = \frac{2}{e_c^m + \hat{e}_c^m + 2}$ $\{u_c^{uni}, p_c^{uni}\} = \delta(c)\{u_c^a, p_c^a\} + (1 - \delta(c))\{u_c^v, p_c^v\}$ $\delta(c) = \begin{cases} 1, & p_c^u > p_c^v, y_c = 1, \\ 0, & p_c^a \le p_c^v, y_c = 1, \\ 1/2, & y_c = 0. \end{cases}$ Loss function for mutial learning $\mathcal{L}_{jml,1} = \sum_{c} \left(1 - u^{av}\right) \left(1 - u^{uni}_{c}\right) * l\left(s(p^{av}_{c}), p^{uni}_{c}\right)$

$$\mathcal{L}_{jml,2} = \sum_{c} u^{av} \left(1 - u_{c}^{uni} \right) * l \left(p_{c}^{av}, s(p_{c}^{uni}) \right),$$

Experiments

Evaluation on AVVP / AVE / AVEP

Table 2. AVVP performance comparison with existing methods on the LLP dataset.

Table 3. AVE performance comparison.

Methods	Segment-level					Event-level				
	A	V	AV	Туре	Event	A	V	AV	Туре	Event
AVE [53], ECCV2018	49.9	37.3	37.0	41.4	43.6	43.6	32.4	32.6	36.2	37.4
AVSDN [29], ICASSP2019	47.8	52.0	37.1	45.7	50.8	34.1	46.3	26.5	35.6	37.7
HAN [52], ECCV2020	60.1	52.9	48.9	54.0	55.4	51.3	48.9	43.0	47.7	48.0
CVCMS [30], NeurIPS2021	60.8	63.5	57.0	60.5	59.5	53.8	58.9	49.5	54.0	52.1
MA [58], CVPR2021	59.8	57.5	52.6	56.6	56.6	52.1	54.4	45.8	50.8	49.4
DHHN [22], MM2022	61.4	63.4	56.8	60.5	59.5	54.6	60.8	51.1	55.5	53.3
MM-Pyramid [65], MM2022	61.1	60.3	55.8	59.7	59.1	53.8	56.7	49.4	54.1	51.2
CMBS* [61], CVPR2022	60.2	54.3	50.0	54.8	55.7	51.1	50.8	43.7	48.5	48.3
JoMoLD [6], ECCV2022	61.3	63.8	57.2	60.8	59.9	53.9	59.9	49.6	54.5	52.5
CMPAE(Ours)	64.2 (+2.9)	66.4 (+2.6)	59.2 (+2.0)	63.3 (+2.5)	62.8 (+2.9)	56.6 (+2.7)	63.7 (+3.8)	51.8 (+2.2)	57.4 (+2.9)	55.7 (+3.2)

Methods	Accuracy(%)
AVEL [53], ECCV2018	66.7
AVRB [47], WACV2020	68.9
CMRAN [62], MM2020	72.9
PSP [70], CVPR2021	73.5
CMAN [63], AAAI2022	70.4
MM-Pyramid [65], MM2022	73.2
CMBS [61], CVPR2022	74.2
DPNet [48], ECCV2022	74.5
CMBS [61], fully-supervised	79.3
JoMoLD* [6], ECCV2022	71.8
CMPAE(Ours)	74.8

* denotes the reproduced results.

Table 4. AVEP performance comparison with existing methods.

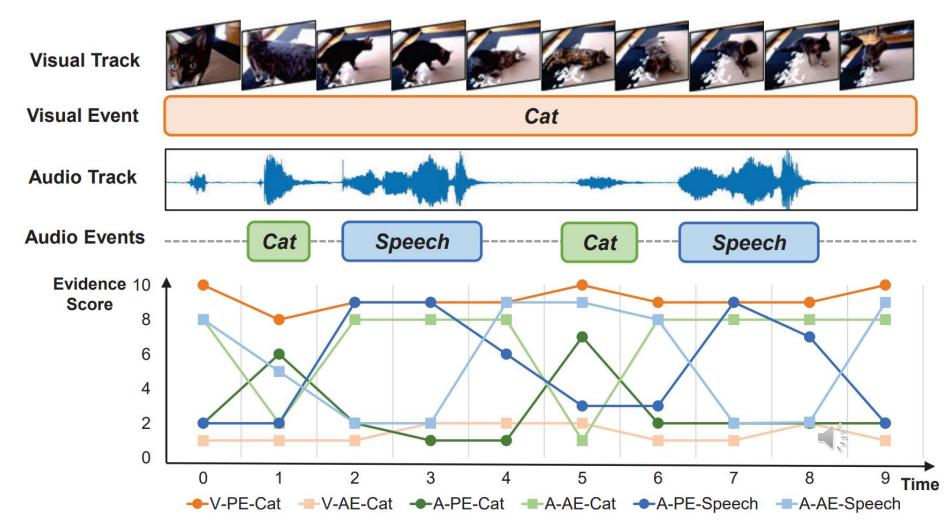
Methods	Segment-level				Event-level				7.	
niculous	A	V	AV	Туре	Event	A	V	AV	Туре	Event
CMBS [61], CVPR2022	58.0	56.2	52.3	55.5	54.8	51.5	53.6	46.4	50.5	49.4
JoMoLD [6], ECCV2022	60.6	58.9	54.5	58.0	57.7	53.6	55.8	48.6	52.7	51.0
CMPAE(Ours)	64.1 (+3.5)	64.4 (+5.5)	58.8 (+4.3)	62.4 (+4.4)	62.2 (+4.5)	57.2 (+3.6)	61.9 (+6.1)	52.3 (+3.7)	57.1 (+4.4)	55.6 (+4.6)

Experiments

Ablation study

EDL	PAEC	AEC JML Seg-level		el Type Eve-level Type		
	mile		AVVP	AVEP	AVVP	AVEP
×	×	×	60.8	58.0	54.5	52.7
\checkmark	×	×	61.0	58.9	54.9	53.8
\checkmark	\checkmark	×	61.9	61.5	56.1	55.9
\checkmark	×	\checkmark	61.4	60.8	55.3	54.6
\checkmark	\checkmark	\checkmark	63.3	62.4	57.4	57.1

Table 5. Ablation studies of our method.


Table 6. In-depth analysis of our proposed PAEC and JML.

Models	Seg-lev	el Type	Eve-level Type		
	AVVP	AVEP	AVVP	AVEP	
both uni-modal	61.2	60.9	55.2	54.4	
both cross-modal	61.7	61.3	55.7	55.9	
exchange uni/cross	62.1	61.6	56.4	56.0	
w/o u^{av}	62.2	61.8	56.5	56.3	
w/o u^{uni}	62.0	61.7	56.4	56.0	
w/o $\delta(c)$	62.5	61.8	56.3	56.5	
CMPAE	63.3	62.4	57.4	57.1	

Experiments

Visualization Analysis

Collecting Cross-Modal Presence-Absence Evidence for Weakly-Supervised Audio-Visual Event Perception

Code & Model

Any problem, please feel free contact the primary author: Junyu Gao junyu.gao@nlpr.ia.ac.cn