

Toward RAW Object Detection: A New Benchmark and A New Model

Ruikang Xu1*Chang Chen2*Jingyang Peng2*Cheng Li2Yibin Huang2Fenglong Song2Youliang Yan2Zhiwei Xiong1†1University of Science and Technology of China2Huawei Noah's Ark Lab

National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application

Toward RAW Object Detection: A New Benchmark and A New Model ——OVERVIEW——

Cyclist

People

20000

40000

RAW Object Detection Dataset Dataset Sensor Dynamic Range Images Category Instance Scenario PASCALRAW [27] Nikon D3200 DSLR 12-bit 4.259 3 classes 6.550 Dav Canon EOS 5D Mark IV 14-bit 2.230 9,726 LOD [39] 8 classes Low-light Sony IMX490 24-bit 25,207 237,379 Ours 6 classes Day & Night Comparison between the PASCALRAW, LOD, and our RAW sensor datasets. 2419 Tricycle 📕 Night Day Tram 2270 127643 Car Truck

Number of instances per category for our ROD dataset.

60000

Example scenes in our ROD dataset. (Show SDR data for better visualization)

120000

140000

100000

RAW Sensor Data for Detection

(a) Imaging Pipeline

(b) LDR vs. RAW for Detection

- RAW sensor data preserve all the from imaging sensor and naturally has a high dynamic range.
- RAW sensor data preserving all information and reducing latency if directly used as input.

Dataset for RAW Object Detection (ROD)

Dataset	Sensor	Dynamic Range	Images	Category	Instance	Scenario
PASCALRAW	Nikon D3200 DSLR	12-bit	4,259	3 classes	6,550	Day
LOD	Canon EOS 5D Mark IV	14-bit	2,230	8 classes	9,726	Low-light
Ours	Sony IMX490	24-bit	25,207	6 classes	237,379	Day & Night

Comparison between the PASCALRAW, LOD, and our RAW sensor datasets.

Example scenes in our ROD dataset. (Show SDR data for better visualization)

Analysis on RAW Detection

Impact of the dynamic range for detection

Date Type		10-bit			12-bit			24-bit		Params
Date Type	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75	1 al al lis
SDR	43.8	65.6	47.4	67.3	93.6	78.4	52.1	74.6	56.8	0.00M
RAW	43.3	64.3	47.3	65.3	92.9	75.8	34.6	54.7	35.4	0.901
SDR	48.1	69.4	53.2	70.9	94.9	84.0	63.3	88.4	69.6	2.27M
RAW	47.8	69.0	51.6	68.4	93.9	81.5	43.9	66.8	46.1	2.2711
SDR	51.8	73.2	56.5	72.8	95.5	86.2	69.7	91.3	76.7	8 02M
RAW	51.2	72.6	56.1	70.5	94.7	84.2	47.5	67.1	52.7	0.9211

Key components of the software ISP

Ablation on the software ISP

Data Type	AP	AP50	AP75
RAW	32.3	53.7	32.9
RAW (DM+AWB)	34.6	54.7	35.4
RAW (DM+AWB+DRA)	52.1	74.4	56.9
RAW (ISP Pipeline)	53.3	76.8	58.6
RAW (DRA)	51.7	76.1	56.2
RAW (ISP Pipeline w/o DRA)	35.2	56.9	35.7

- > DNNs-based detection algorithms cannot handle HDR data, and the performance degradation gets worse when dynamic range increases; ISP system is important for DNNs-based detection.
- Dynamic range adjustment is inevitable to detection on the HDR RAW sensor data, since the higher the dynamic range, the more difficult it is to extract information by DNNs.

HDR RAW Detection Pipeline

- ► Image-level Adjustment Module $Y_I = g(X, \mathcal{F}_I(X_{lr}; | \vartheta_I)) = X^{\gamma}$
- ➢ Pixel-level Adjustment Module
 Y_P = f(X, F_P(X_{lr}; ϑ_P)) = ∑^{K-1}_{k=0}^{K-1} m_kδ_k(X).
 ▷ Loss Function
 L_{total} = L_{cls} + λL_{reg}
- > Jointly optimized with the downstream detection network in an End-to-End scheme.
- > Trained together with the detector from scratch only using detection loss functions.
- > Respectively explore the image-level and pixel-level information; Light-weight and computationally efficient.

Mathod	2	1	Day			Night				Elema (C)
Wiethou	AP	AR	AP50	AP75	AP	AR	AP50	AP75	- Faranis (IVI)	Flops (G)
SDR	52.1	57.2	74.6	56.8	50.3	59.7	80.0	53.7	-	-
RAW	34.6	40.6	54.7	35.4	1.7	5.1	4.5	0.9	-	-
Gamma [12]	52.1	57.3	74.4	56.9	50.8	60.2	80.8	55.0	H	-
Mu-Log [2]	51.5	56.5	74.0	55.6	49.8	57.7	79.3	52.3	-	-
IA-Gamma [12]	53.5	59.7	78.2	57.1	51.8	59.8	81.4	55.8	0.02	0.97
IA-Mu-Log [2]	23.0	31.3	41.9	21.9	50.2	58.9	80.1	54.4	0.02	0.97
GTM [16]	45.1	51.4	68.4	47.6	1.7	4.2	4.1	1.1	0.02	0.97
GTM-DI [16]	45.7	51.9	69.8	48.6	4.8	11.0	10.5	3.7	0.02	0.97
MW-ISPNet [17]	43.4	50.4	67.2	45.8	33.6	44.6	59.1	33.3	9.14	1690.54
Lite-ISPNet [17]	46.8	52.4	68.9	47.3	37.5	47.1	61.9	36.6	5.94	2860.12
IA-ISPNet [23]	54.6	61.2	81.9	59.3	52.7	60.9	81.9	56.8	0.26	0.91
Ours	58.7	63.9	85.3	61.3	54.2	61.7	83.0	58.2	0.08	0.64

Qualitative Evaluation

Quantitative comparison with YOLOX (0.90M) on the day and night scenarios of ROD in terms of AP, AR, AP50, and AP75.

- > DNNs-based detector is ineffective on night scenario RAW sensor data.
- Surpasses SDR data with improvements of 6.6% and 3.9% on the day and night scenarios.
- *▶* Boosts the performance with only 0.08 (M) parameters and 0.64 (G) FLOPs.

Quantitative Evaluation

(a) Detection on the day scenario (b) Detection on the night scenario Visualizing results with confidence scores over 0.4 in the day and night scenarios of ROD.

- > Day scenario, our method can deal with strong glare of sunlight and severe lighting variance.
- > Night scenario, our method can handle lowlight condition and accurately recognize objects.

Quantitative Evaluation ——MoreResults——

(a) RAW (b) SDR (d) Visualizing results with confidence scores over 0.4 in the day scenarios of ROD.

Quantitative Evaluation ——MoreResults——

(a) RAW

(b) SDR

(c) Ours

Visualizing results with confidence scores over 0.4 in the night scenarios of ROD.

Ablation Studies

Quantitative comparison with Sparse R-CNN (104.54M) on the day scenario of the ROD dataset.				Quantitative co on the day	omparison scenario o	with YOL of the ROE	OX (8.92N) dataset.	ſ)	
Method	AP	AR	AP50	AP75	Method	AP	AR	AP50	AP75
SDR	73.5	80.8	91.8	84.0	SDR	69.3	72.4	91.3	76.7
RAW	66.3	73.6	88.1	78.9	RAW	47.5	52.2	67.1	52.7
Gamma [12]	73.7	82.0	92.2	83.1	Gamma [12]	71.2	74.7	94.2	82.4
Mu-Log [2]	72.7	81.4	91.0	84.0	Mu-Log [2]	69.1	72.8	93.9	78.1
IA-Gamma [12]	75.1	82.4	92.4	85.7	IA-Gamma [12]	72.4	75.6	94.4	82.3
IA-Mu-Log [2]	74.2	80.2	91.2	84.6	IA-Mu-Log [2]	42.7	64.6	46.9	48.0
GTM [16]	71.4	78.5	89.4	82.2	GTM [16]	66.0	70.3	88.9	76
GTM-DI [16]	72.6	79.2	89.6	82.5	GTM-DI [16]	66.4	71.9	90.3	72.7
MW-ISPNet [17]	71.6	77.8	91.4	84.2	MW-ISPNet [17]	51.3	66.4	83.3	71.2
MW-ISPNet [17]	72.7	79.2	91.9	85.2	Lite-ISPNet [17]	54.6	68.8	85.3	77.2
IA-ISPNet [23]	75.6	81.2	91.6	85.1	IA-ISPNet [23]	73.1	76.7	94.5	83.1
Ours	77.4	83.6	93.2	87.3	Ours	75.5	78.6	94.9	83.9

> Proposal-based detector on the day scenario of the ROD dataset. Our method outperforms SDR and IA-ISPNet.

> Increasing the parameters number of YOLO-X to 8.92(M). Our method outperforms SDR and IA-ISPNet.

Ablation Studies

Quantitative comp	parison with	YOLOX	(0.90M) on
different	dynamic rar	nge datase	ts.

Method	10-bit	10-bit Dataset		12-bit Dataset		dataset	Doromo	
Methou	AP	AP50	AP	AP50	AP	AP50	r al allis	
SDR	43.8	65.6	67.3	93.6	52.1	74.6		
RAW	43.3	64.3	65.3	92.9	34.6	54.7	0.90(M)	
Ours	44.8	66.2	68.7	94.2	58.7	85.3		
SDR	48.1	69.4	70.9	94.9	63.3	88.4		
RAW	47.8	69.0	68.4	93.9	43.9	66.8	2.27(M)	
Ours	50.6	71.2	70.2	94.9	67.8	92.2		
SDR	51.8	73.2	72.8	95.5	69.7	91.3		
RAW	51.2	72.6	70.5	94.7	47.5	67.1	8.92(M)	
Ours	54.1	74.9	72.5	95.2	75.5	94.9		

Ablation on the Image-Level Adjustment (ILA)
and Pixel-Level Adjustment (PLA) modules.

Method		Day		Night			
Method	AP	AR	AP50	AP	AR	AP50	
SDR	52.1	57.2	74.6	50.3	59.7	80.0	
RAW	34.6	40.6	54.7	1.7	5.1	4.5	
Ours w/o PLA	56.5	63.8	82.3	53.0	60.9	82.1	
Ours w/o ILA	50.0	55.9	73.5	52.0	60.4	81.4	
Ours	58.7	63.9	85.3	54.2	61.7	83.0	

- Our method outperforms the SDR data on different dynamic range datasets.
- Proposed modules are effective for the detection on RAW sensor data.

Analysis for Performance Drop on RAW

- Pixels of RAW sensor data are distributed in the low-value area resulting in a lack of texture information.
- The case of imaging a strong glare in an extremely dark scene, which means several close-to-one values inside a nearly zero-value background

Impact of texture information on the performance of detection with YOLOX on the day and night scenario of the ROD dataset.

Method	Skew	Entropy of GLCM	AP
RAW	8.1742	11.1691	34.6
GTM-DI [16]	2.3311	20.9431	45.1
Gamma [12]	0.8873	24.0634	52.1
IA-Gamma [12]	0.6098	24.1645	53.5
Ours	0.9719	24.5954	58.7
Method	Skew	Entropy of GLCM	AP
RAW	136.4161	0.0876	1.7
GTM-DI [4]	123.4059	0.1865	1.8
Gamma [2]	2.8328	15.6294	50.8
- · · · · · · · · · · · · · · · · · · ·			
IA-Gamma [2]	2.2821	15.7872	51.8

- Dynamic range adjustment method is effective to boost texture information.
- Performance of detection on RWA sensor data is positively associated with the entropy of GLCM.

Conclusion

- > Novel RAW sensor dataset for object detection on HDR RAW sensor data.
- Simple and effective adjustment method for detection on RAW sensor data.
- Extensive experiments demonstrate that object detection on HDR RAW sensor
 - data significantly outperforms that on SDR data in different situations.

Thanks!

National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application