

LinK: Linear Kernel for LiDAR-based 3D Perception

Tao Lu¹ Xiang Ding¹ Haisong Liu¹ Gangshan Wu¹ Limin Wang^{1,2 *} ¹State Key Laboratory for Novel Software Technology, Nanjing University ²Shanghai AI Lab {taolu,xding,liuhs}@smail.nju.edu.cn, {gswu,lmwang}@nju.edu.cn

Problem How to scale up kernels in 3D?

Difficulties ≻Cubically increasing overhead

Difficulties ➤ Sparsity slows down the optimization

Empty area fails to be updated in backward process

Our Solution >Linear Kernel Generator

- ✓ Constant amount of learnable params, not increase along with the kernel size;
- ✓ Layer-wise sharing generator makes it friendly to optimization process.

Our Solution ≻Pre-aggregation

$$\{a, b, c\} \qquad a = w(a-a) \cdot f_a + w(b-a) \cdot f_b + w(c-a) \cdot f_c$$

The overlap area is processed repeatedly!

Local offset

Our Solution ≻Pre-aggregation

Global coordinate

Pre-aggregation with global coordinate makes the overlap area reusable!

Our Solution ≻Full pipeline of LinK

Our Solution ➤Network Architecture

(a) Architecture of the LinK-based backbone; (b) the constructed network for 3D semantic segmentation; (c) the constructed network for 3D object detection.

Experiment: Detection

construction traffic_cone motorcycle -vehicle pedestrian bicycle barrier trailer truck bus car mAP Methods Source NDS PointPillars [31] 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9 CVPR19 45.3 81.2 47.9 3DSSD [47] CVPR20 56.4 42.6 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 CenterPoint [36] CVPR21 65.5 58.0 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9 50.9 HotSpotNet [48] ECCV20 66.0 59.3 83.1 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6 TransFusion-L [39] 86.2 56.7 28.2 68.3 44.2 82.0 78.2 CVPR22 70.2 65.5 66.3 58.8 86.1 Focals Conv [49] CVPR22 63.8 86.7 56.3 67.7 23.8 87.5 64.5 36.3 81.4 74.1 70.0 59.5 74.3 LargeKernel [1] arXiv22 70.5 65.3 85.9 55.3 66.2 60.2 26.8 85.6 72.5 46.6 80.0 75.5 LinK 71.0 66.3 86.1 55.7 65.7 62.1 30.9 85.8 73.5 47.5 80.4 Ours 71.8 VISTA* [50] 78.6 CVPR22 70.4 63.7 84.7 54.2 64.0 55.0 29.1 83.6 71.0 45.2 UVTR-LiDAR* [51] NeurIPS22 69.7 63.9 86.3 52.2 62.8 59.7 33.7 84.5 68.8 41.1 74.7 74.9 MDRNet* [52] arXiv22 72.8 68.4 87.9 58.5 67.3 64.1 30.2 89.0 77.0 50.7 85.0 74.7 LargeKernel3D* [1] 72.8 68.8 87.3 30.2 75.0 arXiv22 59.1 68.5 65.6 88.3 77.8 53.5 82.4 73.4 69.8 87.3 60.2 69.8 65.9 34.0 78.8 54.3 83.0 76.8 LinK* Ours 88.2

Table 1. Results on the test phase of nuScenes Detection. **Bold**: best results. * denotes using TTA.

Experiment: Segmentation

	11 0000	1000100			Pubb				,		0001	ob art.	, .	· Por		, au		unge	map	, ,	
Method	Input	mIoU	Car	Bicycle	Motorcycle	Truck	Other-vehicle	Person	Bicyclist	Motorcyclist	Road	Parking	Sidewalk	Other-ground	Building	Fence	Vegetation	Trunk	Terrain	Pole	Traffic-sign
RandLA-Net [41]	Р	53.9	94.2	26.0	25.8	40.1	38.9	49.2	48.2	7.2	90.7	60.3	73.7	20.4	86.9	56.3	81.4	61.3	66.8	49.2	47.7
RangeNet++ [60]	R	52.2	91.4	25.7	34.4	25.7	23.0	38.3	38.8	4.8	91.8	65.0	75.2	27.8	87.4	58.6	80.5	55.1	64.6	47.9	55.9
SqueezeSegV3 [61]	R	55.9	92.5	38.7	36.5	29.6	33.0	45.6	46.2	20.1	91.7	63.4	74.8	26.4	89.0	59.4	82.0	58.7	65.4	49.6	58.9
SalsaNext [62]	R	59.5	91.9	48.3	38.6	38.9	31.9	60.2	59.0	19.4	91.7	63.7	75.8	29.1	90.2	64.2	81.8	63.6	66.5	54.3	62.1
SPVNAS [42]	P+V	67.0	97.2	50.6	50.4	56.6	58.0	67.4	67.1	50.3	90.2	67.6	75.4	21.8	91.6	66.9	86.1	73.4	71.0	64.3	67.3
Cylinder3D [43]	V	67.8	97.1	67.6	64.0	59.0	58.6	73.9	67.9	36.0	91.4	65.1	75.5	32.3	91.0	66.5	85.4	71.8	68.5	62.6	65.6
(AF)2-S3Net [63]	V	69.7	94.5	65.4	86.8	39.2	41.1	80.7	80.4	74.3	91.3	68.8	72.5	53.5	87.9	63.2	70.2	68.5	53.7	61.5	71.0
DRINet [64]	P+V	67.5	96.9	57.0	56.0	43.3	54.5	69.4	75.1	58.9	90.7	65.0	75.2	26.2	91.5	67.3	85.2	72.6	68.8	63.5	66.0
RPVNet [44]	R+P+V	70.3	97.6	68.4	68.7	44.2	61.1	75.9	74.4	73.4	93.4	70.3	80.7	33.3	93.5	72.1	86.5	75.1	71.7	64.8	61.4
Mink(baseline) [15]	V	68.0	97.1	51.8	56.4	43.3	56.8	70.2	75.7	51.8	89.9	67.8	74.8	32.9	91.5	66.5	86.2	74.6	71.0	63.5	70.0
LinK(Ours)	V	70.7	97.4	58.4	56.6	52.9	64.2	72.3	77.0	69 .1	90.6	68.2	76.2	34.5	92.0	68.8	85.7	74.3	70.5	64.8	69.5

Table 2. SemanticKITTI test results. Red: surpassing the baseline; **bold**: best results; 'P': point cloud; 'R': range map; 'V': voxel.

Experiment: Ablations

□ How does large kernel work?

✓ Large objects benefit greatly.

Table 5. Performance on different scale objects.

Category	$Size(m^3)$	De	tection	Segmentation			
Category	5120(111)	Center	+L inK	Mink	+LinK		
		Point					
Truck	$6 \times 2 \times 2$	51.0	(+4.7)55.7	43.3	(+9.6)52.9		
Person	0.4 imes 0.4 imes 2	83.4	(+2.4)85.8	70.2	(+2.1)72.3		

The influence of kernel size

Table 1	. Different	kernel	sizes	for	segmentation.	Without	TTA.
---------	-------------	--------	-------	-----	---------------	---------	------

$r \times s$	mIoU(%)@SemKITTI val
3×2	66.9
3 imes 3	67.3
3×5	67.5
3×7	67.2

Figure 7. Detection performance with different kernel sizes.

Visualizations

Figure 6. The effective receptive field (ERF) of the detection. The brightness indicates the degree of activation. LinK enjoys a wider-range perception.

Visualizations

(a) Baseline

Thanks!

Contact

- Tao Lu: taolu@smail.nju.edu.cn
- Xiang Ding: xding@smail.nju.edu.cn
- Haisong Liu: liuhs@smail.nju.edu.cn

Code