

Dynamic Generative Targeted Attacks with Pattern Injection Weiwei Feng¹, Nanqing Xu¹, Tianzhu Zhang^{1,2}, Yongdong Zhang¹ ¹University of Science and Technology of China, ²Deep Space Exploration Lab fengww@mail.ustc.edu.cn, xnq@mail.ustc.edu.cn, {tzzhang, zhyd73}@ustc.edu.cn

Poster ID: 386 Tag: WED-PM-386

>We propose a dynamic generative model to craft transferable targeted adversarial examples, which can not only inject pattern or style information of the target class to improve transferable targeted attacks, but also learn specialized convolutional kernels for each input instance. \geq In the generative model, we design a novel cross-attention guided dynamic convolution module and a pattern injection module. \geq We present extensive experiments to demonstrate the effectiveness against normal and robust models.

Quick Preview

Limitations of current targeted attacks:

- Instance-specific attacks:
 - only take advantage of the specific input instance with iterative gradient updating • instance-specific attacks rely on optimizing the classification score of the adversary-desired class label to perturb the specific instance, which ignore the global data distribution

 - lead to adversarial examples over-fitting the white-box model and result in modest transferability of targeted attacks
- > Instance-agnostic attack (Generative attacks):
 - Most generative attacks still rely on the target label and the classification boundary information of white-box models rather
- than the realistic data distribution of the target class.
 - Existing generative attacks apply the same network weights to every input instance in the test dataset.

Introduction

Observation:

(a)

Motivation

(b)

Visualization comparison between adversarial examples generated by our method (a) and the instance-specific method MIM (b). Our perturbations (a) not only show an underlying dependency with the input instance, but also have strong semantic patterns or styles of the target class ("Hippopotamus"). In contrast, the perturbations generated by MIM perform like random noises.

More transferable adversarial examples

Analysis:

The casual graph of model inference. Each node is a random variable, where C, S, x, y and θ represent content, style or pattern, the input image, the prediction label, and model parameters, respectively.

Motivation

- content cause C and style cause S $P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})$

 \triangleright For the input images x, we propose to group the whole causes of x into

We expand the prediction $P_{\theta}(y \mid x)$ and $P_{\theta}(y \mid x_{adv})$ as:

$$= \sum_{s \in \mathbb{S}} P_{\theta}(s \mid \boldsymbol{x}) P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}, s). \quad (1)$$

 $P_{\theta}(\boldsymbol{y}_t \mid \boldsymbol{x}_{adv}) = \sum_{s \in \mathbb{S}} P_{\theta}(s \mid \boldsymbol{x}_{adv}) P_{\theta}(\boldsymbol{y}_t \mid \boldsymbol{x}_{adv}, s). \quad (2)$

So we propose to exploit $P_{\theta}(y_t | x_{adv}, s)$ to perform targeted attacks.

 \triangleright Injecting the specific style or pattern of images from the given target class y_t can generate targeted transferable adversarial examples.

Architecture of dynamic generative targeted attacks :

 $\boldsymbol{x}_{adv} = \operatorname{clip} \left\{ \operatorname{Proj} \left(\mathcal{W} * G_{\theta(\boldsymbol{x})}(\boldsymbol{x}, p_t), -\varepsilon, \varepsilon \right) + \boldsymbol{x} \right\},$ (3)

Method

- Static convolution
- Dynamic convolution

> Pattern injection module:

- Pattern prototype
- Adaptive class norm layer

Cross-attention guided dynamic convolution module

Cross-attention guided dynamic convolution module

Static convolution

Dynamic convolution

Method

Benefiting from this dynamic and static mixup convolution operation, our proposed generative attack model can inherit the advantages of both instance-specific and instance-agnostic attacks.

> Pattern injection module: • Pattern prototype Adaptive class norm layer Pattern prototype $oldsymbol{p}_t = \{oldsymbol{\gamma}_t, oldsymbol{eta}_t\}$ Ema updating $\boldsymbol{p}_t^{\text{running}} = \lambda \boldsymbol{p}_t + (1 - \lambda) \boldsymbol{p}_t^{\text{running}}$ Adaptive class norm layer AdaCN(\mathbf{X}) = $\gamma_t \left(\frac{\mathbf{X} - \mu(\mathbf{X})}{\sigma(\mathbf{X})} \right) + \boldsymbol{\beta}_t$,

Method

Theoretical Analyses:

 $\mathcal{X}_s \sim N(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}_s), \quad \mathcal{X}_t \sim N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t),$

$$[\mathbf{x}_s - \boldsymbol{\mu}_s) + \boldsymbol{\mu}_t] - C_2 \boldsymbol{x}_s,$$

Objective functions:

Distance loss

L

Local similarity loss

Total objective function

Method

$= D_{KL} \left(f(\boldsymbol{x}_{adv}) \| f(\boldsymbol{x}_{t}) \right) + D_{KL} \left(f(\boldsymbol{x}_{t}) \| f(\boldsymbol{x}_{adv}) \right)$ $= D_{KL} \left(f(\boldsymbol{x}_{adv}') \| f(\boldsymbol{x}_{t}) \right) + D_{KL} \left(f(\boldsymbol{x}_{t}) \| f(\boldsymbol{x}_{adv}') \right)$

 $\mathcal{L}_{attack} = \mathcal{L} + \mathcal{L}_{aug} + \mathcal{L}_{sim}$

Against normal models

Experiments

Substite Model	Method	Inc-v3	Inc-v4	Inc-Res-v2	Res152	Densenet-121	GoogleNet	Vgg-16
Inc-v3	MIM	99.90	0.80	1.00	0.40	0.20	0.20	0.30
	TI-MIM	98.50	0.50	0.50	0.30	0.20	0.40	0.40
	SI-MIM	99.80	1.50	2.00	0.80	0.70	0.70	0.50
	DIM	95.60	2.70	0.50	0.80	1.10	0.40	0.80
	TI-DIM	96.00	1.10	1.20	0.50	0.50	0.50	0.80
	SI-DIM	90.20	3.80	4.40	2.00	2.20	1.70	1.40
	CD-AP	94.20	57.60	60.10	37.10	41.60	32.30	41.70
	TTP	91.37	46.04	39.37	16.40	33.47	25.80	25.73
	C-GSP	93.40	66.90	66.60	41.60	46.40	40.00	45.00
	GAP	86.90	45.06	34.48	34.48	41.74	26.89	34.34
	Ours	94.63	67.95	55.03	50.50	47.38	47.67	48.11
	MIM	0.50	0.40	0.60	99.70	0.30	0.30	0.20
	TI-MIM	0.30	0.30	0.30	96.50	0.30	0.40	0.30
	SI-MIM	1.30	1.20	1.60	99.50	1.00	1.40	0.70
	DIM	2.30	2.20	3.00	92.30	0.20	0.80	0.70
Res152	TI-DIM	0.80	0.70	1.00	90.60	0.60	0.80	0.50
	SI-DIM	4.20	4.80	5.40	90.50	4.20	3.60	2.00
	CD-AP	33.30	43.70	42.70	96.60	53.80	36.60	34.10
	TTP	62.03	49.20	38.70	95.12	82.96	65.09	62.82
	C-GSP	37.70	47.60	45.10	93.20	64.20	41.70	45.90
	GAP	30.99	31.43	20.48	84.86	58.35	29.89	39.70
	Ours	66.83	53.62	47.61	96.48	86.61	68.29	69.58
Vgg-16	MIM	0.26	0.47	0.20	0.35	0.40	0.34	90.24
	TI-MIM	0.43	0.63	0.34	0.55	1.45	0.64	89.13
	SI-MIM	0.35	0.57	0.42	0.31	0.56	0.52	90.89
	DIM	0.75	1.30	0.55	1.00	1.88	1.03	97.70
	TI-DIM	0.23	0.38	0.17	0.29	0.48	0.35	93.71
	SI-DIM	0.87	1.12	0.70	0.95	1.89	1.55	91.42
	CD-AP	5.32	8.94	4.87	9.33	14.02	3.19	96.82
	TTP	22.51	17.14	9.68	22.68	40.87	22.41	97.59
	C-GSP	9.42	9.60	3.01	11.76	32.28	13.33	96.81
	GAP	3.11	5.26	1.50	5.08	11.23	2.70	93.00
	Ours	28.18	21.78	9.56	25.27	46.55	23.70	93.00

Experiments Against robust models and input preprocess defense

Substite Model	Method	Adv-Inc-v3	Ens-IncRes-v2	Res50_SIN	Res50_SIN_IN	Res50_SIN_fine_IN	Res50_
Res152	MIM	0.19	0.15	0.28	1.58	2.75	0.
	TI-MIM	0.61	0.73	0.50	2.51	4.75	1.
	SI-MIM	0.24	0.24	0.39	0.66	0.84	0.
	DIM	0.63	0.37	0.94	8.50	14.22	3.
	TI-DIM	0.23	0.30	0.28	0.76	1.49	0.
	SI-DIM	0.71	0.71	0.75	2.73	3.89	1.
	CD-AP	3.77	6.48	7.09	63.72	76.79	49
	TTP	27.99	26.08	24.61	72.47	74.51	70
	GAP	5.72	4.51	7.33	71.04	83.64	52
	Ours	31.10	30.07	27.70	77.13	80.55	76
VGG16	MIM	0.14	0.15	0.16	0.40	0.34	0.
	TI-MIM	0.26	0.24	0.20	0.45	0.57	0.
	SI-MIM	0.28	0.20	0.21	0.49	0.25	0.
	DIM	0.22	0.16	0.27	0.93	0.99	0.
	TI-DIM	0.14	0.19	0.21	0.35	0.34	0.
	SI-DIM	0.50	0.36	0.33	0.80	0.69	0.
	CD-AP	0.36	0.34	0.35	4.63	10.20	3.
	TTP	3.75	3.20	2.66	27.80	32.70	16
	GAP	0.30	0.52	0.42	4.52	8.92	3.
	Ours	4.14	3.22	2.66	30.16	38.10	17

Visualization

Radio

Ballon

French bulldog (a)

Experiments

Leaf beetle

Fire engine (b)

Radio

Ballon

Leaf beetle

Street sign (c)

>We propose a dynamic generative model to craft transferable targeted adversarial examples with a novel cross-attention guided dynamic convolution module and a pattern injection module. >Benefit from the dynamic convolution module and a pattern injection module, our method can not only inject pattern or style information of the target class to improve transferable targeted attacks, but also learn specialized convolutional kernels for each input instance, which inherits the advantages of both instance-specific and instance-agnostic attacks. >We state that injecting the specific pattern or style of the target class can improve the transferability of targeted adversarial examples, and we provide a comprehensive theoretical analysis to verify the rationality of this statement. \geq We present extensive experiments to demonstrate the effectiveness against normal and robust models.

Summary

Thanks for your attention!!!!!

