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Our method recovers more high-
quality and photo-realistic 3d face
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Neural Rendering Method, e.g., NeRF-based Generative models

EG3D [3] + PTI [4]

Reconstruction Deformation

Ours

Our method is more robust to challenging conditions, and is able to 
perform disentangled face deformation in a controllable way. 



Preliminary

EG3D pretrained model

Style inversion pose

Pivotal tuning (PTI)
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Motivation & Solution

Neural rendering methods are sensitive to large pose, extreme appearance or shadow

Distortion Shape ambiguity

We use photo collection to provide consistent multi-image prior for robust 3D face modeling



Summary of our approach

Neural proto-face field learning

1. Aggregating a 3D-consistent

face shape from a photo

collection.

2. Disentangling the deformation

and identity of face prototype.

Neural proto-face field fitting

1. Warming up the neural proto-

face field based on the photo

collection to avoid overfitting.

2. Fitting one target image to

recover personalized details.



Approach
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The consistent shape cues with lower uncertainty are maintained after aggregation



Approach

ሶ𝐧𝑖

ሶ𝐈𝑖

Fixed 

Module

Trained 

Module

EG3D 

Generator

ҧ𝐬 {Δ𝐬𝑖}𝑖=1
𝑁

…
{𝐈𝑖}𝑖=1

𝑁
{ ሶ𝐈𝑖}𝑖=1

𝑁

Lre

…

Volume & 

Neural Renderer

{𝑝𝑖}𝑖=1
𝑁

ҧ𝐬 Δ𝐬𝑖

EG3D 

Generator
𝑝𝑖 𝐈𝑖

Lre
Volume & 

Neural Renderer

ෝ𝐧𝑖

Lgc

𝑝′

Volume & 

Neural Renderer

Global Face 

Encoder

Φ𝑒
ሶ𝐈𝑖
′

𝐡𝑖

ሶ𝐡𝑖
′

Lac

Volume & 

Neural Renderer

𝑝′

Neural proto-face field fitting

1. Warming up the neural proto-face

field generator based on the image

set and geometry consistency loss

to avoid overfitting.

2. Fitting one target image under

reconstruction loss and appearance

consistency.



Ablation study: the deformation modeling

with Deformation

w/o Deformation
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Ablation study: photo collection & fitting



Ablation study: uncertainty modeling & losses

Ours w/o uncertainty, avg poolingcollection

• The uncertainty modeling significantly 
improves the identity preservation

Target Ours w/o 𝐿𝑎𝑐 Target Ours w/o 𝐿𝑎𝑐

• The appearance consistency loss recovers 
better texture details



Comparison with state-of-the-art methods

Target Ours LAP PhyDIR D3DFR DECA

Target Ours EG3D + PTI Target Ours EG3D + PTI

Ours EG3D + PTI PhyDIR HeadNeRF



Comparison with state-of-the-art methods

Target EG3D + PTIOurs HeadNeRF



More results on challenging conditions
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