

Prototype-based Embedding Network for Scene Graph Generation

Chaofan Zheng*, Xinyu Lyu*, Lianli Gao, Bo Dai, and Jingkuan Song

School of Computer Science and Engineering, University of Electronic Science and Technology of China

Problem

Existing SGG methods fail to capture compact and distinctive relation representations.

- Large intra-class variation: arises from diverse appearance of entities and various subject-object combinations.
- Severe inter-class similarity: originates from similar-looking interactions shared among different relation categories.

Fig. 1. The illustration of relation representations with large intra-class variation and severe inter-class similarity.

Motivation

Category-inherent Semantics is more reliable than visual appearance.

- Intra-class variation: Entities/predicates from each class share the same semantics, captured from class labels.
- Inter-class similarity: Class-inherent semantics is discriminative for visual-similar instances from different categories.

Fig. 1. The illustration of relation representations with large intra-class variation and severe inter-class similarity.

Prototype-based Embedding Network (PE-Net):

• Prototype-based Modeling:

Models entities/predicates with prototypealigned representations in semantic space.

- **Prototype-guided Entity-Predicate Matching**: Match entity pairs to predicates in semantic embedding space for relation recognition.
- Prototype-guided Learning:

Help PE-Net efficiently learn entitypredicate matching.

• Prototype Regularization:

Relieve ambiguous entity-predicate matching caused by predicate's semantic overlap.

Prototype-based Embedding Network (PE-Net):

• Prototype-based Modeling:

$$s = W_s t_s + v_s, \qquad (1)$$

$$o = W_o t_o + v_o, \qquad (2)$$

$$p = W_p t_p + u_p, \qquad (3)$$

where t_s , t_o and t_p are class labels' word embedding, v_s , v_o , u_p are the instance-varied semantics contents, $W_s t_s$, $W_o t_o$, $W_p t_p$ are class-specific semantic prototypes.

$$g_s = \sigma(f((W_s t_s) \oplus h(x_s))), \quad (4)$$

$$\boldsymbol{v}_s = \boldsymbol{g}_s \odot \boldsymbol{h}(\boldsymbol{x}_s), \qquad (5)$$

where $h(\cdot)$ is visual-to-semantic function.

Fig. 3. Visual-based space Modeling.

Fig. 4. Prototype-based space Modeling.

Prototype-based Embedding Network (PE-Net):

• Prototype-guided Entity-Predicate Matching:

$$\mathcal{F}(s,o) \to p = W_p t_p + u_p, \qquad (6)$$

$$\mathcal{F}(s, o) = \text{ReLU}(s + o) - (s - o)^{2} [1],$$
 (7)

where $\mathcal{F}(s, o)$ denotes the feature fusion function.

Equivalent transformation:

$$\mathcal{F}(s,o) - u_p \to W_p t_p, \qquad (8)$$

where $\mathcal{F}(s, o) - u_p$ is defined as relation representation r, which should be matched to its corresponding predicate prototype $W_p t_p$. (represented as c in the following).

Fig. 5. Prototype-guided Entity-Predicate Matching.

[1] Zhang, Yan, et al. "Learning to count objects in natural images for visual question answering." arXiv preprint:1802.05766 (2018).

Prototype-based Embedding Network (PE-Net):

• Prototype-guided Learning:

Cosine distance: Increasing the cosine similarity between the relation representation r, and its corresponding prototype c_t ,

$$\mathcal{L}_{e_sim} = -\log \frac{\exp(\langle \overline{r}, \overline{c_t} \rangle / \tau)}{\sum_{j=0}^{N} \exp(\langle \overline{r}, \overline{c_j} \rangle / \tau)}.$$
 (9)

Euclidean distance: Increasing the Euclidean distance between the relation representation r, and its corresponding prototype c_t ,

$$g_j = || r - c_j ||_2^2,$$
 (10)

$$\mathcal{L}_{e_euc} = max(0, g^+ - g^- + \gamma_1).$$
 (11)

Fig. 6. Prototype-guided Learning.

Prototype-based Embedding Network (PE-Net):

• **Prototype Regularization**:

Cosine distance /Euclidean distance : Alleviates ambiguous matching caused by semantic overleap between predicates by enlarging distinction between predicate prototypes c_t .

$$S = \overline{C} \cdot \overline{C}^{T} = (s_{ij}), \qquad (12)$$
$$\mathcal{L}_{r_sim} = \|S\|_{2,1} = \sum_{i=0}^{N} \sqrt{\sum_{j=0}^{N} s_{ij}^{2}}, \qquad (13)$$

$$d_{ij} = \| c_i - c_j \|_2^2, \qquad (14)$$

$$\mathcal{L}_{r_euc} = max(0, -d^- + \gamma_2). \quad (15)$$

• Relation Inference:

$$res_r = arg \max_i (q_i \mid q_i = \langle \overline{r}, \overline{c_i} \rangle / \tau).$$
 (16)

Fig. 7. Prototype Regularization.

Experiment

Compared with State of the Arts:

Model	PredCls			SGCls			SGDet		
	R@50/100	mR@50/100	M@50/100	R@50/100	mR@50/100	M@50/100	R@50/100	mR@50/100	M@50/100
Motifs [*] [25, 36]	65.3 / 67.2	14.9 / 16.3	40.1 / 41.8	38.9 / 39.8	8.3/8.8	23.6/24.3	32.1 / 36.8	6.6 / 7.9	19.4 / 22.4
VCTree [*] [25,27]	65.5/67.4	16.7 / 17.9	41.1 / 42.7	40.3 / 41.6	7.9/8.3	24.1 / 25.0	31.9 / 36.0	6.4 / 7.3	19.2 / 21.7
G R-CNN* [11,33]	65.4 / 67.2	16.4 / 17.2	40.9 / 42.2	37.0/38.5	9.0/9.5	23.0/24.0	29.7 / 32.8	5.8 / 6.6	17.8 / 19.7
KERN* [1,11]	65.8 / 67.6	17.7 / 19.2	41.8 / 43.4	36.7 / 37.4	9.4 / 10.0	23.1/23.7	27.1 / 29.8	6.4 / 7.3	16.8 / 18.6
VTransE [*] [25,40]	65.7 / 67.6	14.7 / 15.8	40.2 / 41.7	38.6/39.4	8.2/8.7	23.4/24.1	29.7 / 34.3	5.0 / 6.1	17.4 / 20.2
R-CAGCN [32]	66.6 / 68.3	18.3 / 19.9	42.5 / 44.1	38.3 / 39.0	10.2/11.1	24.3/25.1	28.1/31.3	7.9 / 8.8	18.0 / 20.1
GPS-Net* [11, 15]	65.2 / 67.1	15.2 / 16.6	40.2 / 41.9	37.8 / 39.2	8.5/9.1	23.2/24.2	31.3 / 35.9	6.7 / 8.6	19.0 / 22.3
RU-Net [17]	<u>67.7 / 69.6</u>	-/24.2	- / 46.9	42.4 / 43.3	- / 14.6	-/ <u>29.0</u>	32.9 / 37.5	- / 10.8	-/ <u>24.2</u>
PE-Net(P)	68.2 / 70.1	23.1 / 25.4	<u>45.7 / 47.8</u>	41.3 / 42.3	<u>13.1 / 14.8</u>	<u>27.2</u> /28.6	<u>32.4 / 36.9</u>	<u>8.9</u> / <u>11.0</u>	<u>20.7</u> /24.0
PE-Net	64.9 / 67.2	31.5 / 33.8	48.2 / 50.5	39.4 / 40.7	17.8 / 18.9	28.6 / 29.8	30.7 / 35.2	12.4 / 14.5	21.6 / 24.9
Motifs-TDE [26]	46.2 / 51.4	25.5 / 29.1	35.9 / 40.3	27.7 / 29.9	13.1 / 14.9	20.4 / 22.4	16.9 / 20.3	8.2 / 9.8	12.6 / 15.1
Motifs-CogTree [34]	35.6 / 36.8	26.4 / 29.0	31.0/32.9	21.6 / 22.2	14.9/16.1	18.3 / 19.2	20.0 / 22.1	10.4 / 11.8	15.2 / 17.0
Motifs-BPL-SA [5]	50.7 / 52.5	29.7 / 31.7	40.2 / 42.1	30.1 / 31.0	16.5/17.5	23.3/24.3	23.0/26.9	13.5 / 15.6	18.3 / 21.3
Motifs-NICE [10]	<u>55.1 / 57.2</u>	29.9/32.3	42.5 / 44.8	<u>33.1 / 34.0</u>	16.6/17.9	<u>24.9</u> / 26.0	27.8 / 31.8	12.2 / 14.4	<u>20.0</u> / <u>23.1</u>
Motifs-PPDL [12]	47.2/47.6	32.2/33.3	39.7 / 40.5	28.4 / 29.3	17.5/18.2	23.0/23.8	21.2/23.9	11.4 / 13.5	16.3 / 18.7
Motifs-GCL [3]	42.7 / 44.4	<u>36.1 / 38.2</u>	39.4 / 41.3	26.1 / 27.1	<u>20.8</u> / <u>21.8</u>	23.5/24.5	18.4 / 22.0	16.8 / 19.3	17.6 / 20.7
Motifs-Reweight [2]	53.2 / 55.5	33.7 / 36.1	<u>43.5 / 45.8</u>	32.1/33.4	17.7 / 19.1	<u>24.9</u> / <u>26.3</u>	25.1/28.2	13.3 / 15.4	19.2 / 21.8
PE-Net-Reweight	59.0 / 61.4	38.8 / 40.7	48.9 / 51.1	36.1 / 37.3	22.2 / 23.5	29.2 / 30.4	<u>26.5 / 30.9</u>	<u>16.7 / 18.8</u>	21.6 / 24.9

Tab. 1. Performance comparison with the state-of-the-art SGG methods on VG dataset. PE-Net(P) refers to the PE-Net only trained with PL. PE-Net indicates PE-Net trained with both PL and PR.

Experiment

Measuring Representation Modeling of PE-Net:

• Calculation of IV and IIVR:

Intra-class Variance (IV): measure the intra-class compactness of entity's or predicate's representations,

$$\sigma_{within}^2 = \frac{1}{Mn} \sum_{i=0}^{M} \sum_{j=1}^{n} |\phi_{i,j} - \mu_i|_2^2, \quad (17)$$

Intra-class to Inter-class Variance (IIV): measure the inter-class distinctiveness of the representations.

$$\frac{\sigma_{within}^2}{\sigma_{between}^2} = \frac{1}{n} \frac{\sum_{i=0}^M \sum_{j=1}^n |\phi_{i,j} - \mu_i|^2}{\sum_{i=0}^M |\mu_i - \mu|_2^2}.$$
 (18)

Models	IV-O↓	IIVR-O↓	IV-R↓	IIVR-R↓
Motifs [26, 38]	9.73	1.93	1.41	2.72
VCTree [26, 28]	8.31	2.11	1.50	2.78
Transformer [26, 30]	9.08	2.05	1.44	2.76
G-RCNN [12, 35]	8.76	1.99	1.46	2.81
GPS-Net [12, 16]	9.36	2.07	1.53	2.69
PE-Net	0.74	0.24	1.06	1.67

Tab. 2. Quantitative results on representation quality.

(d) Relations (PE-Net) Fig. 8. The comparison of t-SNE visualization results on entity and predicate feature distributions.

Thanks

If you have any questions, please contact me at : xinyulyu68@gmail.com

Codes: <u>https://github.com/VL-Group/PENET</u>

