Poster Session: THU-PM-367

Vector Quantization with Self-Attention for Quality-Independent Representation Learning

Zhou Yang1Weisheng Dong1*Xin Li2Mengluan Huang1Yulin Sun1Guangming Shi1

¹School of Artificial Intelligence Xidian University

历安意子科技大学 XIDIAN UNIVERSITY 2Lane Department. of CSEE West Virginia University

WestVirginiaUniversity.

Overview

> Problems:

The robustness of deep models on the potential data distribution shift

> Motivation:

Sparse representation can remove redundancy in signals and works well in image restoration

> Method:

Vector quantization for quality-independent feature representation learning.

➤ Results:

Better recognition performance on several benchmark datasets.

Overview

> The overall architecture of our proposed method:

background

Visualization of CAM Class Activation Maps for Deep Models on Clean and Defocus-Blur Images Deep features extracted from low-quality images are interfered, affecting the recognition

Related Work

- **D** Existing recognition methods for degraded images
 - Fine-tuning the models by mimicking real-world corruption

Based on image restoration:

> a): recognition after restoration, Haze removal (ECCV'18)

b): Recognition friendly: Denoise&Recog (IJCAI'19), URIE (ECCV'20)

Related Work

□ Vector quantization:

$$\hat{\boldsymbol{z}} = E(\boldsymbol{z}) = \boldsymbol{e}_{\boldsymbol{k}}, \quad \text{where } k = \arg\min_{i} \left| |\boldsymbol{z} - \boldsymbol{e}_{i}| \right|_{2}^{2}$$

Method

- > Quality-independent feature representation learning:
 - Assuming that the quality-independent feature vector \hat{z} of an image is a linear combination of a series of features (atoms):

$$\hat{z} = \sum_{i} \alpha_{i} * \boldsymbol{e}_{i} = \alpha_{0} * \boldsymbol{e}_{0} + \alpha_{1} * \boldsymbol{e}_{1} + \dots + \alpha_{n} * \boldsymbol{e}_{n}, \ \boldsymbol{e}_{i} \in E, \ E \in \mathbb{R}^{n \times d}$$
(1)

• We have this sparse representation, which need to optimize α and *E* alternately:

$$\hat{\mathbf{z}} = E * \hat{\alpha}, \ \hat{\alpha} = \arg\min_{\alpha} \left| \left| \mathbf{z} - E * \boldsymbol{\alpha} \right| \right|_{2}^{2} + \lambda * \left| \left| \boldsymbol{\alpha} \right| \right|_{0}$$
(2)

• Simplify α as an one-hot vector, we have:

$$\hat{\mathbf{z}} = e_k \tag{3}$$

• Vector quantization as VQ-VAE:

$$L_{vq} = \left| \left| sg(\mathbf{z}) - \hat{\mathbf{z}} \right| \right|_{2}^{2}$$
(4)

$$L_{cmt} = \left| \left| \mathbf{z} - sg(\hat{\mathbf{z}}) \right| \right|_{2}^{2}$$
(5)

Method

> Overall architecture of our proposed approach:

Method

> Training Loss:

$$L_{total} = L_{ce} + \lambda * (L_{vq} + \beta * L_{cmt})$$
(6)

Concatenate & self-attention:

$$f = Cat(\mathbf{z}, \hat{\mathbf{z}}) \tag{7}$$

$$f_{sa} = softmax \left(K * \frac{Q^T}{\sqrt{d^n}} \right) * V$$
(8)

> Experiments have shown that these skills can further improve performance.

Ablation Study

> The impact of codebook size n:

Size	# Params	clean ↑	mCE↓
n = 1k	$4.0 imes 10^7$	76.1	45.7
n = 10k	$5.8 imes 10^7$	76.6	43.1
n = 100k	2.4×10^8	76.6	42.9

> The choice of fusion mode:

CodeBook	Fusion mode	SA	clean ↑	mCE↓
-	-	-	73.1	53.7
✓	replace	-	74.3	50.1
✓	add	-	74.7	48.9
\checkmark	concat	-	76.2	45.7
\checkmark	concat	\checkmark	76.6	43.1

Results

Method	Backbone	Clean	Known	UnKnown	mCE↓
Vanilla [20]		76.1	39.1	46.7	76.7
DDP [55]		72.1	48.2	50.7	62.78
URIE [47]	ResNet50	73.8	55.1	56.5	55.7
QualNet [29]		75.4	61.1	58.1	50.3
Ours		76.6	65.6	60.2	43.1
Vanilla [20]		79.6	47.1	55.5	69.7
QualNet [29]	ResNeXt101	77.8	65.5	63.3	42.6
Ours		80.3	68.6	64.5	37.9

Method	Clean	ImageNet-C↓	ImageNet-A	ImageNet-R
Vanilla [20]	76.1	76.7	0.0	36.2
+ Ours	76.6	71.1	3.7	38.6
DeepAugment [21]	76.6	60.4	3.5	42.2
+ AugMix [23]	75.8	53.5	3.9	46.8
+ DAT [35]	77.1	50.8	6.8	47.8
DAu+AM+Ours	77.4	48.7	5.9	49.3

The top-1 accuracy of each method on several benchmark datasets.

Results

The detailed top-1 accuracy results of the different methods for each corruption type in the benchmark dataset ImageNet-C.

Results

Clean image CAM on clean CAM on blur After our method

Summary

- We propose to introduce vector quantization into the recognition model and improve the models' robustness on common corruptions.
- We concatenate the quantized feature vector with the original one and use the selfattention module to enhance the quality-independent feature representation instead of direct replacement in the standard vector quantization method.
- Extensive experimental results show that our method has achieved higher accuracy on benchmark low-quality datasets than several current sota methods.

Thank you for watching!

Code is available at: https://github.com/yangzhou321/VQSA

