

Neural Vector Fields: Implicit Representation by Explicit Learning

Xianghui Yang¹, Guosheng Lin², Zhenghao Chen¹, Luping Zhou¹

¹The University of Sydney, ²Nanyang Technological University.

Overview

- We propose a novel differentiation-free 3D representation Neural Vector Fields.
- We propose a learned shape codebook to provide cross-object priors.
- We evaluate the effectiveness of NVF on extensive experiments, i.e., category-specific, category-agnostic, category-unseen, and cross-domain reconstructions.

Comparison

Comparison

Unsigned Distance Functions

UDF $(q) = d, \forall q$ $q \in \mathbb{R}^3$ is the query point $\widehat{q} \in \mathbb{R}^3$ is the nearest point on surface

Neural Vector Fields

 $NVF(q) = \Delta q = \hat{q} - q, \forall q$ $q \in \mathbb{R}^3$ is the query point $\widehat{\boldsymbol{q}} \in \mathbb{R}^3$ is the nearest point on surface Differentiation-free $dist(\boldsymbol{q}) = \left| \left| \Delta \boldsymbol{q} \right| \right|_{2}$ $dir(\boldsymbol{q}) = \frac{\Delta \boldsymbol{q}}{\left| \left| \Delta \boldsymbol{q} \right| \right|_{2}}$

Architecture

Non-differentiation

Feature Extraction

Multi-head Codebook

Field Prediction

 $M \times 2D$ Query $M \times 3$ Query MLPs ... Query Query

Field Prediction

Category-specific Reconstruction

Methods	CD↓	EMD↓	F1 _{1×10} -5	F1 _{2×10} -5
Input	0.363	0.707	23.735	41.588
NDF [15]	0.197	1.248	64.116	84.902
GIFS [75]	0.146	0.970	54.867	79.722
Ours	0.114	0.945	64.261	85.290

Table 1. Quantitative evaluation on ShapeNet Cars. We train and evaluate our method on the raw data of the ShapeNet "Car" category. Our method achieves better performance than the state-of-the-art UDF-based methods.

Figure 4. Qualitative visualization of Category-specific reconstruction on ShapeNet Cars. We cut parts of the shapes to visualize inner structures better.

Category-agnostic & Category-unseen Reconstruction

Methods	Base			Novel				
wienious	CD↓	EMD↓	$F1_{2.5\times10^{-5}}\uparrow$	$F1_{1\times 10^{-4}}$ \uparrow	CD↓	EMD↓	$F1_{1\times 10^{-5}}\uparrow$	$F1_{2\times 10^{-5}}\uparrow$
Input	0.840	1.045	14.148	25.111	0.800	1.024	17.576	29.815
OccNet [44]	2.766	1.694	30.877	46.644	44.762	4.013	15.943	24.433
IF-Net [14]	0.190	1.120	65.975	85.421	0.596	1.608	61.670	81.106
NDF [15]	0.169	1.538	66.802	84.809	0.169	1.741	65.622	84.069
GIFS [75]	0.179	1.280	56.188	78.458	0.194	1.534	56.644	78.016
Ours	0.091	1.079	78.503	91.408	0.144	1.145	80.883	91.836

Table 2. Quantitative results of category-agnostic and category-unseen reconstructions on watertight shapes of ShapeNet. We train all models on the base classes, and evaluate them on the base and the novel classes, respectively.

Methods	Base				Novel			
CD	CD↓	EMD↓	$F1_{2.5\times10^{-5}}\uparrow$	$F1_{1\times 10^{-4}}$	CD↓	EMD↓	$Fl_{1\times 10^{-5}}\uparrow$	$F1_{2\times 10^{-5}}\uparrow$
Input	0.317	0.867	32.875	51.105	0.289	0.843	39.902	58.092
NDF [15]	0.099	1.372	72.425	88.754	0.093	1.532	76.162	89.977
GIFS [75]	0.118	1.260	64.915	85.115	0.296	1.499	69.252	86.518
Ours	0.085	1.197	75.372	90.266	0.078	1.340	79.723	91.576

Table 3. Quantitative results of category-agnostic and category-unseen reconstructions on non-watertight shapes of ShapeNet. We train all models on the base classes and evaluate them on the base and the novel classes, respectively.

Category-agnostic & Category-unseen Reconstruction

Figure 5. Visualization of category-agnostic and category-unseen reconstructions on watertight shapes from the ShapeNet dataset. The 1^{st} row, planes, is from the base classes. The 2^{rd} row, watercraft, is from the novel classes.

Figure 6. Visualization of category-agnostic and category-unseen reconstructions on non-watertight shapes from the ShapeNet dataset. The 1^{st} row, tables, is from the base classes. The 2^{nd} and 3^{rd} rows, benches and watercraft, are from the novel classes.

Watertight

Novel

Non-watertight

Base

Novel

Cross-domain Reconstruction

Methods	CD↓	EMD↓	$F1_{1 \times 10^{-5}}$	F1 _{2×10-5}
Input	0.124	0.157	52.189	72.969
NDF [15]	0.025	0.216	96.338	98.687
GIFS [75]	0.039	0.192	93.330	97.295
Ours	0.014	0.184	98.499	99.498

Table 4. Quantitative results of cross-domain reconstruction on MGN [6]. We train our models based on ShapeNet with the base classes and evaluate them on the raw data from MGN.

Ablation Study

	K	Codebook	CD↓	EMD↓	F1 _{1×10-5}	F1 _{2×10} -5
	k=8	×	0.089	1.195	74.139	89.392
Base	k=8	1	0.087	1.172	75.104	90.057
	k=16	×	0.121	1.212	73.642	88.962
	k=16	1	0.085	1.197	75.372	90.266
	k=8	×	0.080	1.334	78.701	90.972
Novel	k=8	1	0.083	1.354	79.522	91.434
	k=16	×	0.081	1.329	78.800	91.084
	k=16	 ✓ 	0.078	1.340	79.723	91.576

Table 5. Effect of feature number K and multi-head codebook. The multi-head codebook improves the performance and achieves the best for K = 16.

Methods	Backbone	Codebook	Runtime	Memory
NDF [15]	3D Conv	×	0.75s	13.44G
Ours	3D Conv	×	0.27s	9.21G
	3D Conv	1	0.34s	9.21G
	PointTransformer	×	0.29s	9.28G
	PointTransformer	✓	0.35s	9.28G

Table 7. Inference analysis. The runtime and memory are time cost and peak memory during the inference of 200k queries. NVF is more efficient on inference runtime and memory.

Figure 8. Training curves of models w/ and w/o codebook. The models w/ codebooks converge faster than those w/o codebooks.

Thanks

GitHub: https://github.com/Wi-sc/NVF.git

Paper: https://arxiv.org/abs/2303.04341

Email: xianghui.yang@sydney.edu.au