

AutoFocusFormer: Image Segmentation off the Grid THU-AM-167

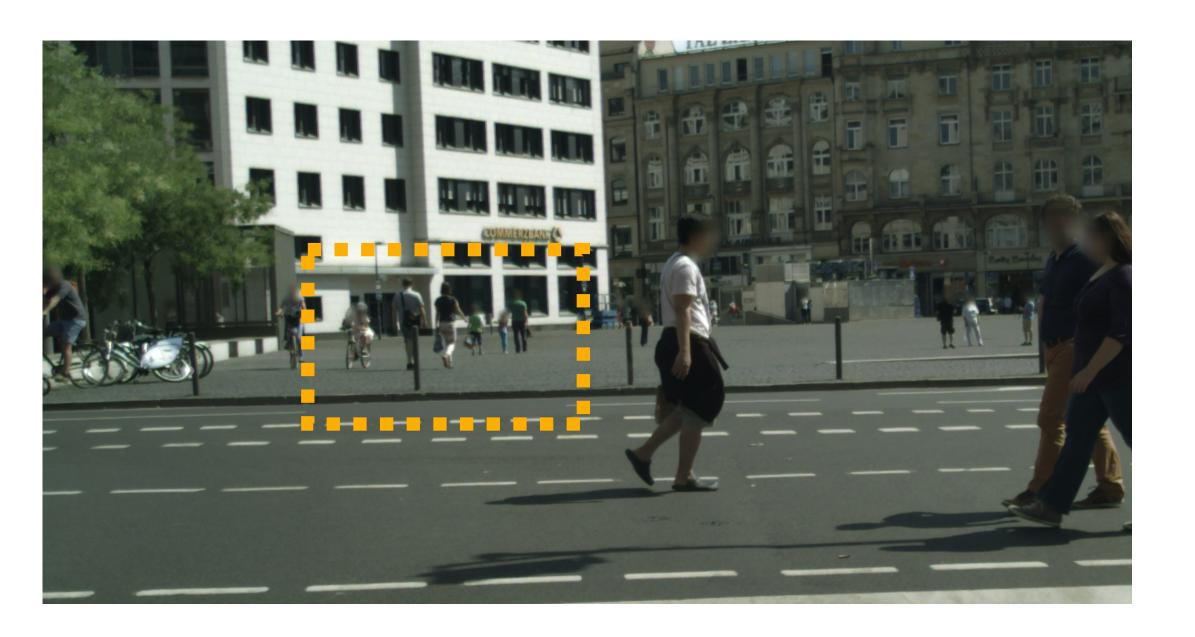
Chen Ziwen, Kaushik Patnaik, Shuangfe Alex Colburn, Li Fuxin

2023.6 | Apple Inc. & Oregon State University

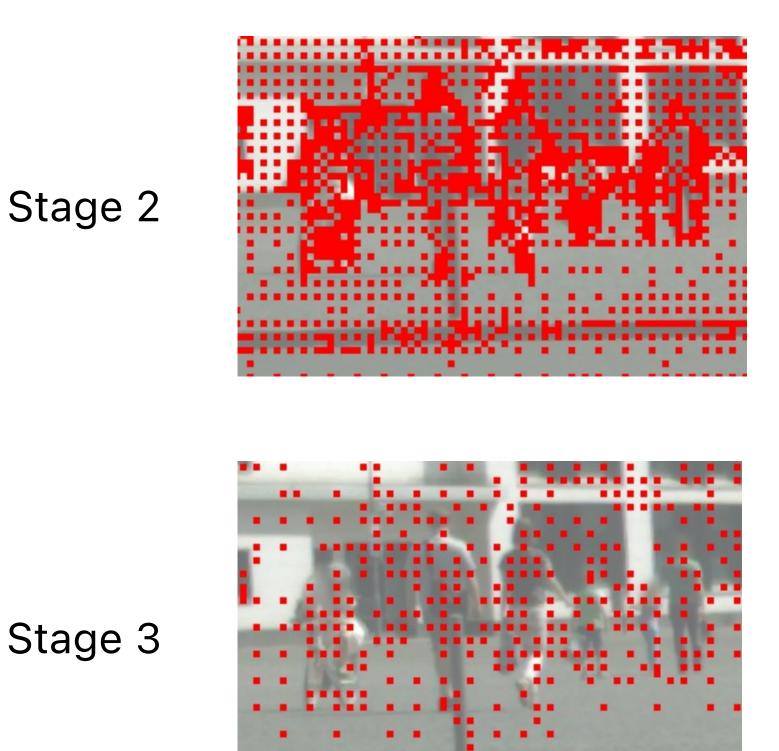
Chen Ziwen, Kaushik Patnaik, Shuangfei Zhai, Alvin Wan, Zhile Ren, Alex Schwing,

AutoFocusFormer(AFF)

Multi-stage, local-attention transformer, equipped with successive adaptive downsampling layers



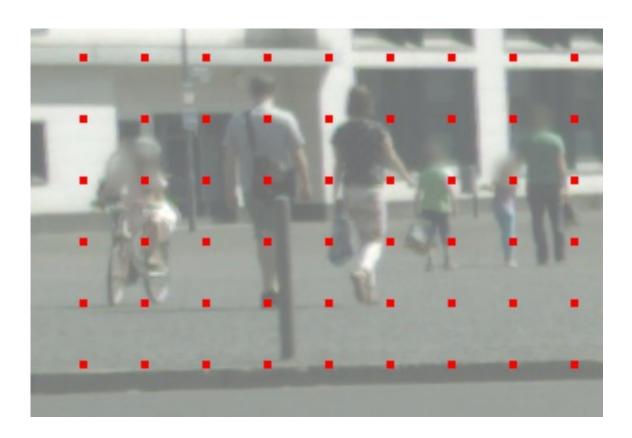
Image

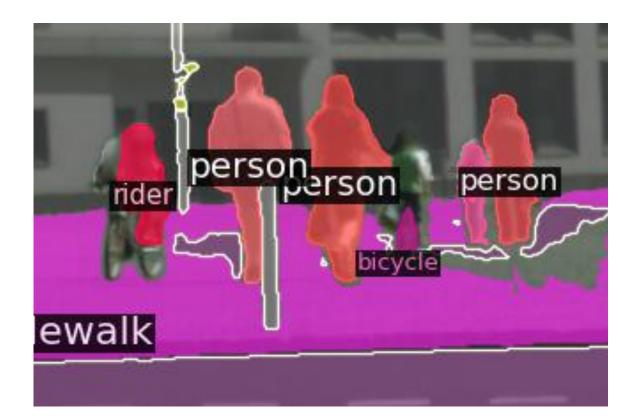


Stage 3

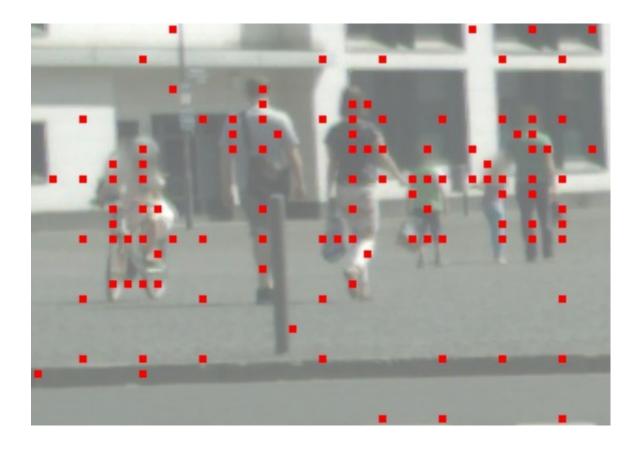
Red pixels indicate remaining tokens

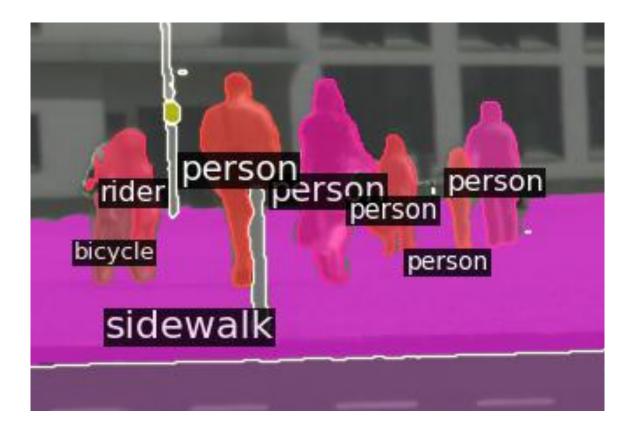
AutoFocusFormer(AFF)





Panoptic Segmentation With Swin backbone





Panoptic Segmentation With AFF backbone

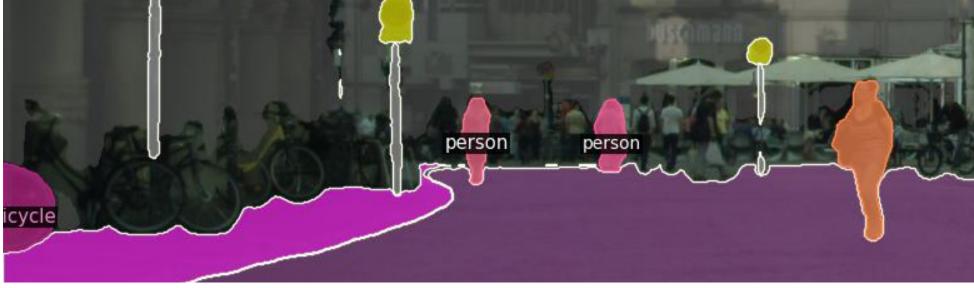
Result Highlights

On Cityscapes segmentation

- AFF-Tiny performs on par with Swin-Base (3.3x larger)
- AFF-Small performs on par with Swin-Large (4.6x larger)

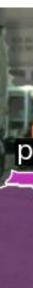
For all datasets, AFF saves ~30% FLOPs without much drop in performance

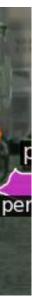
Image



SWIN prediction

AFF prediction





Natural images often have highly imbalanced content density

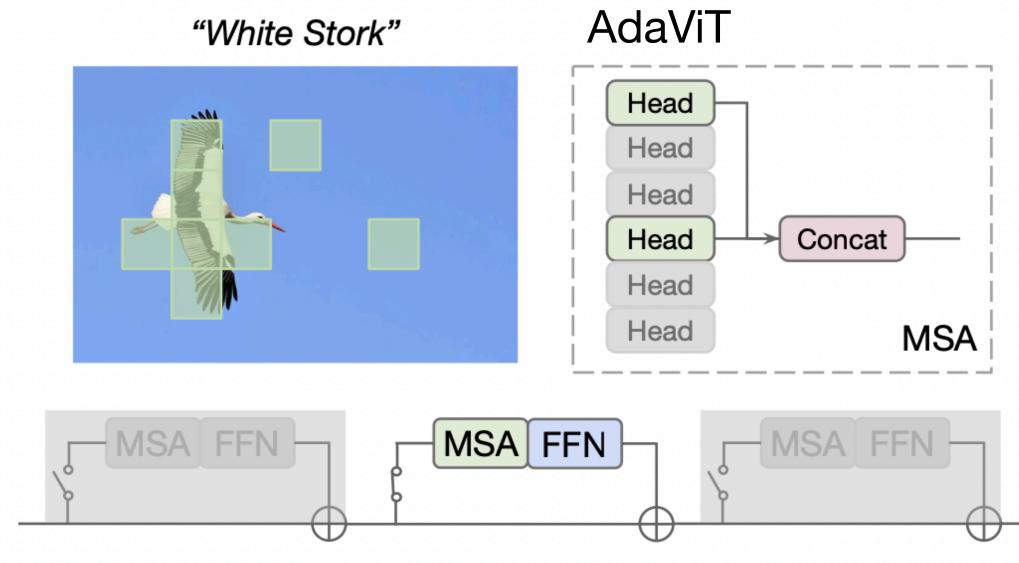
Mainstream networks use grid downsampling

- Mis-classify small objects
- Waste computation on large objects

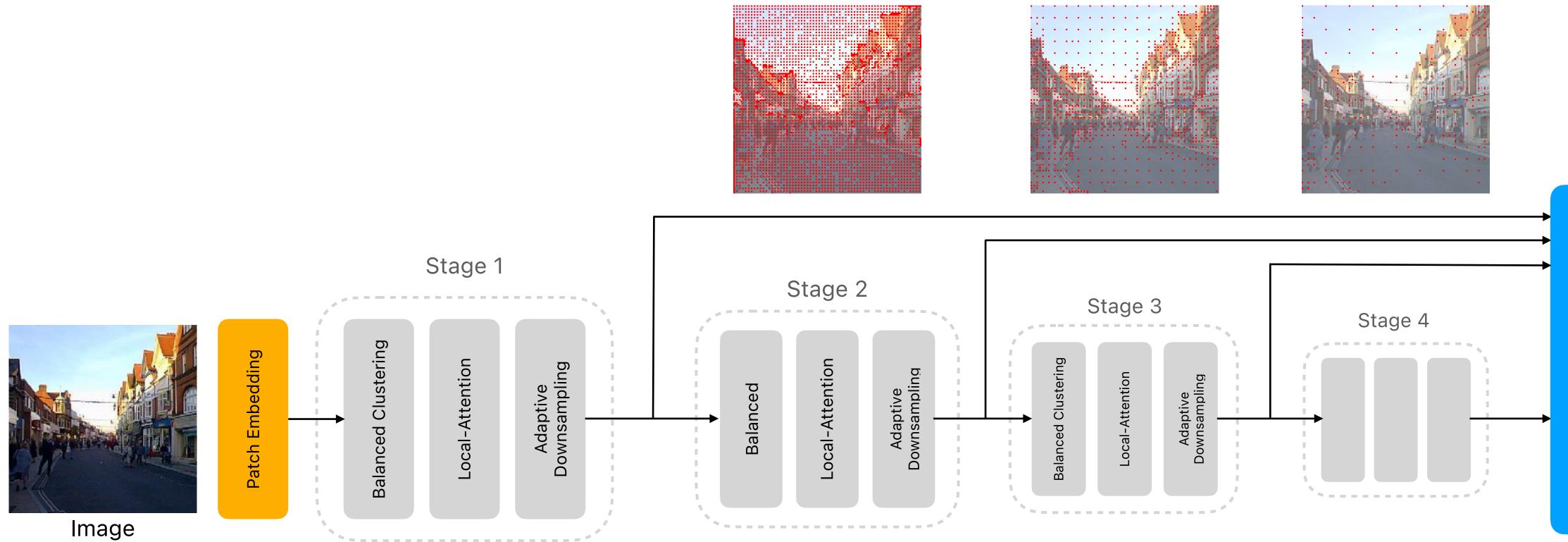
Adaptive Models on Transformers

- E.g., AdaViT, DynamicViT, A-ViT...
- Adopt global attention (quadratic complexity!)
- No actual downsampling in training (need gradient)

Thus, they cannot scale to highresolution segmentation tasks!



AFF Architecture

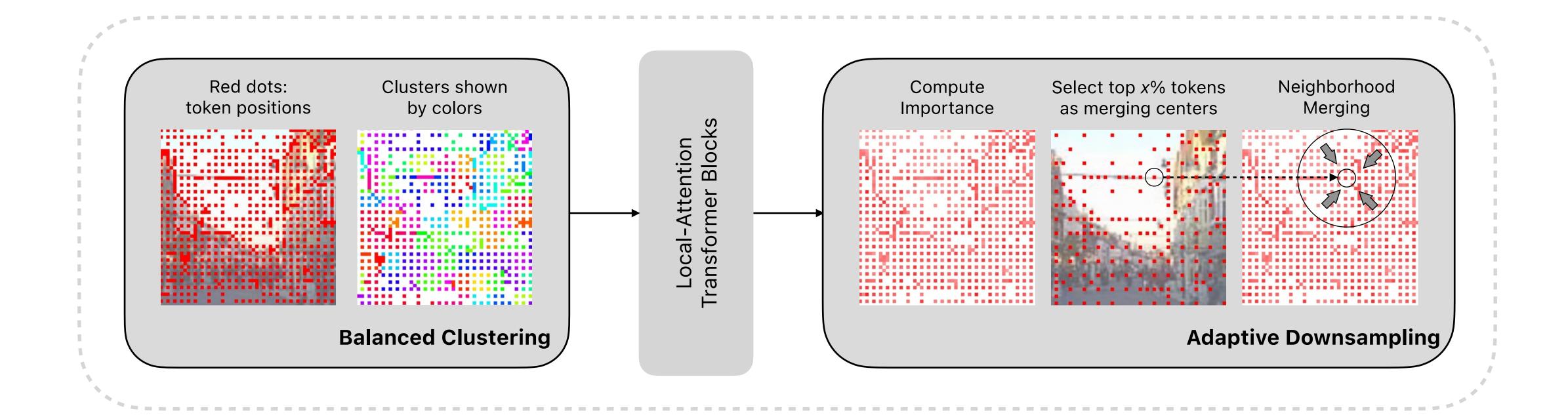


Remaining tokens

Segmentation Head



AFF Architecture



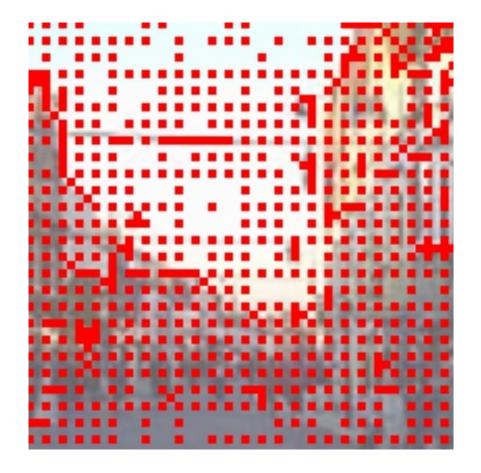
Three modules that form AFF's stage

AFF Clustering

We propose a fast, non-iterative, equal-sized clustering method for 2D tokens

The method is based on spacefilling curves

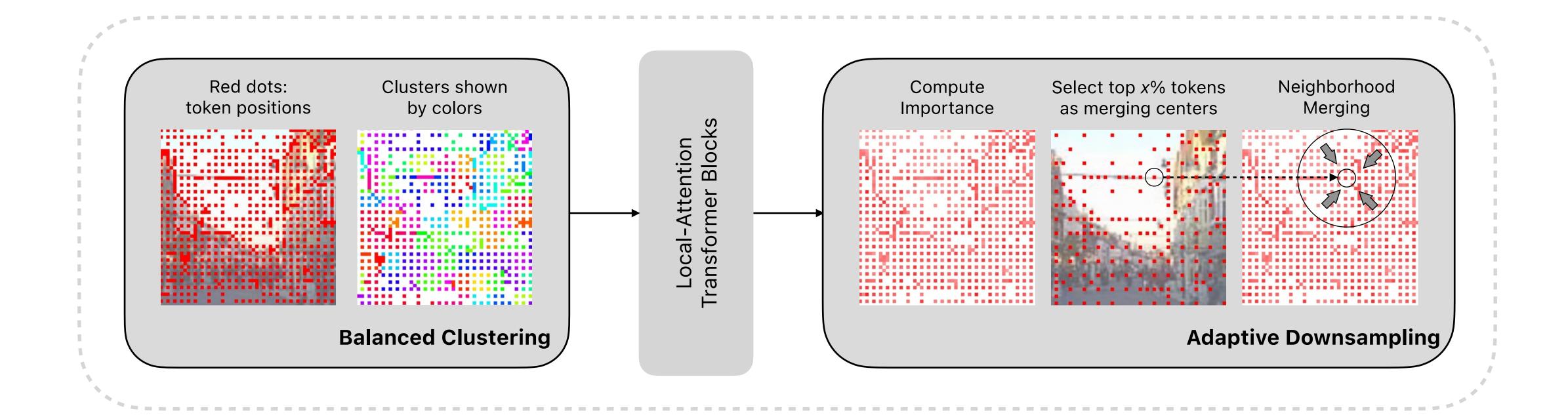
Please refer to our paper for algorithm details!



Red dots: tokens

Clusters

AFF Architecture

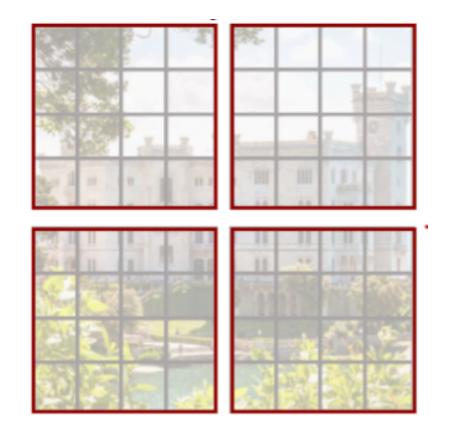


Three modules that form AFF's stage

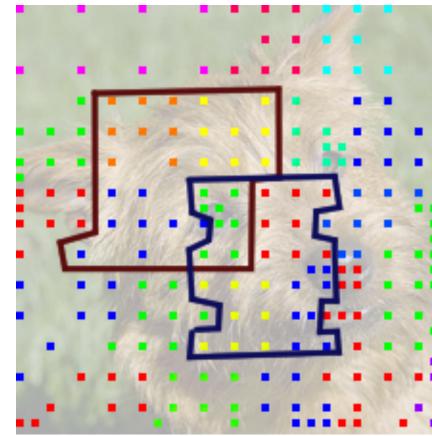
AFF Local Attention

Using the equal-sized clusters, we define the neighborhood of a token by its nearest *R* clusters

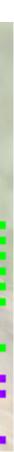
Overlapping neighborhoods enable the smooth propagation of information among tokens



On-grid



Off-grid



AFF Local Attention

On each neighborhood, we apply the standard transformer self-attention: $A = \operatorname{softmax}(QK^T + P)$

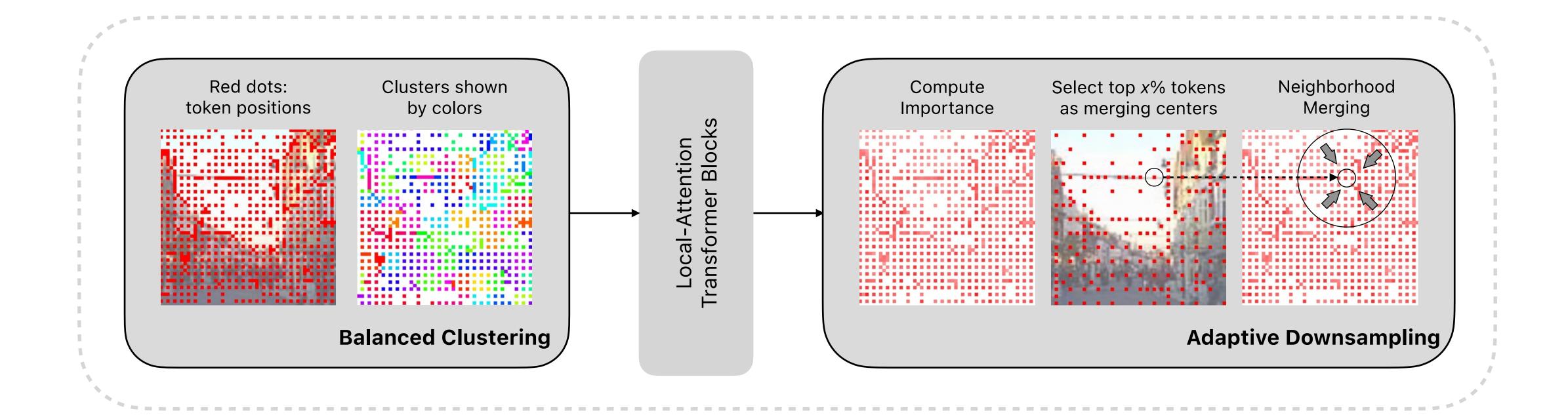
where
$$P_{i,j} = w(p_i - p_j)$$

We further make this embedding aware of potential **rotation/scale invariances** by expanding the relative position vector:

$$\left(\!\Delta x, \Delta y, \sqrt{\Delta x^2 \!+\! \Delta y^2}, \frac{\Delta x}{\sqrt{\Delta x^2 \!+\! \Delta y^2}}, \frac{\Delta y}{\sqrt{\Delta x^2 \!+\! \Delta y^2}}, \frac{\Delta y}{\sqrt{\Delta x^2 \!+\! \Delta y^2}}\right)$$

is the positional embedding

AFF Architecture



Three modules that form AFF's stage

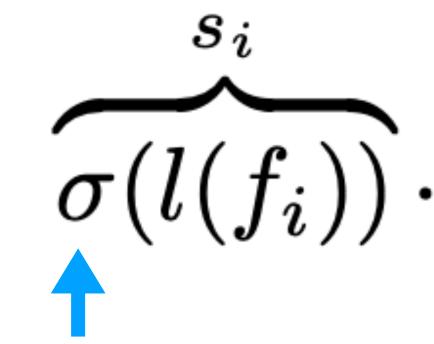
Adaptive Downsampling

First, for each token, we compute an importance score s_i

f_i: token feature

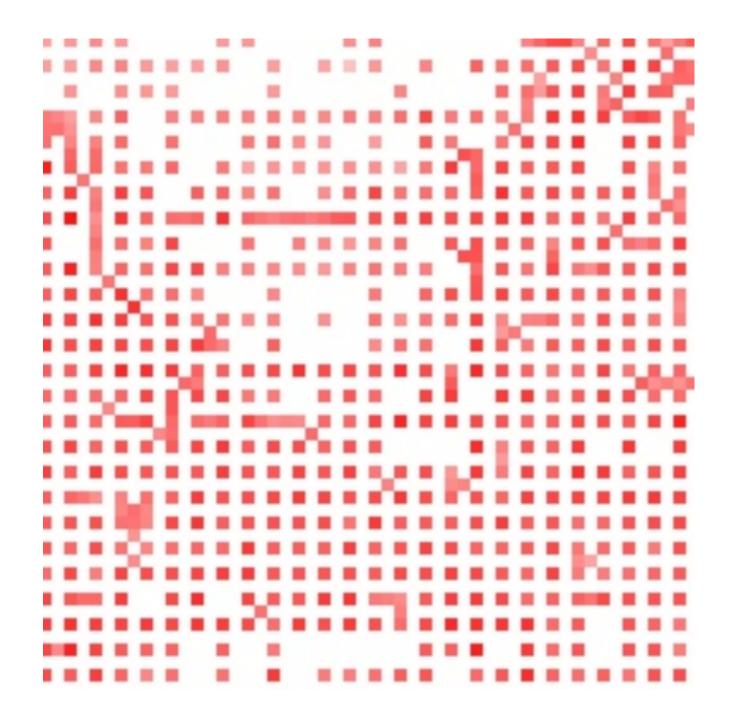
I: a fully-connected layer

Importance score =



Sigmoid

Compute Importance

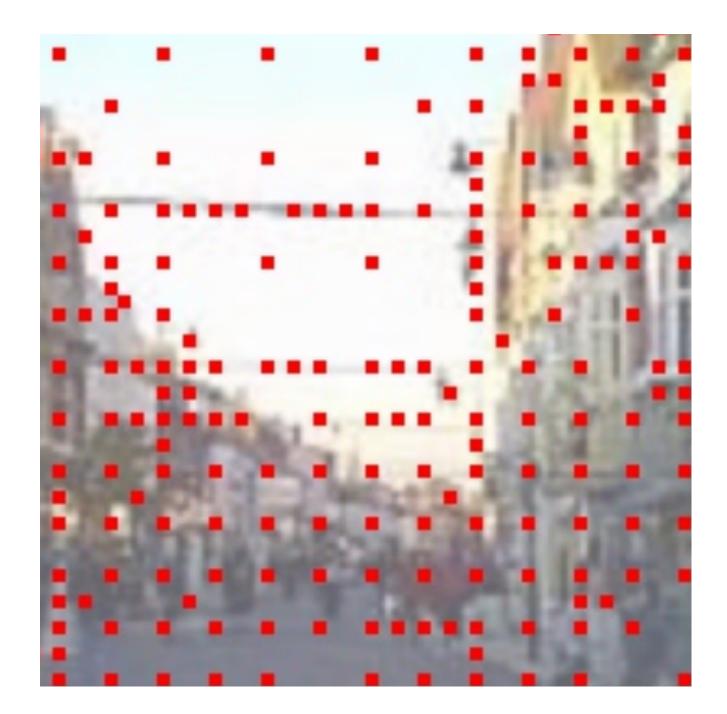


Merging center selection

Second, we select top x% tokens according to the importance scores

x% is the downsampling rate (we show experiment results with 1/4 and 1/5)

Select top *x*% tokens



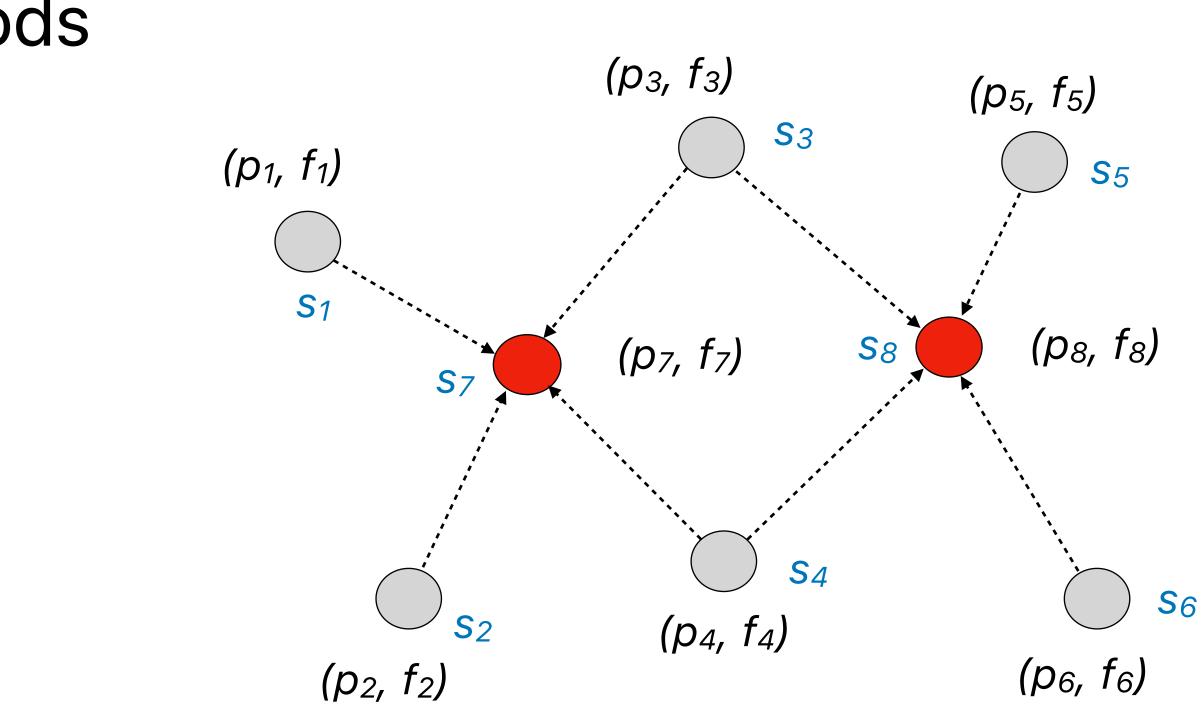
Neighborhood Merging

Lastly, we merge the neighborhoods of the selected tokens

We use a PointConv layer, modulated by the learnable importance score s_i's

The output is x% merged tokens

Wu, Wenxuan, Zhongang Qi, and Li Fuxin. "Pointconv: Deep convolutional networks on 3d point clouds." Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2019.



ImageNet classification

1/5: downsampling rate

- Mo
- Swi
- AFF
- AFF
- Swi
- AFF
- AFF
- Swi
- AFF AFF

odel	Top-1 Acc	# Params	FLOPs
vin-Mini	76.9%	6.76M	1.07G
F-Mini	78.2%	6.75M	1.08G
F-Mini-1/5	77.5%	6.75M	0.72G
vin-Tiny	81.3%	28M	4.5G
F-Tiny	83%	27M	4G
F-Tiny-1/5	82.4%	27M	2.74G
vin-Small	83%	50M	8.7G
F-Small	83.5%	42.6M	8.16G
F-Small-1/5	83.4%	42.6M	5.69G

Experiments

ADE20K semantic segmentation

Μ Sv AF AF Sw AF AF Sv AF AF

Segmentation head: Mask2Former

odel	mloU	FLOPs
win-Mini	44.1	48.9G
FF-Mini	46.5	48.3G
FF-Mini-1/5	46.0	39.9G
win-Tiny	47.7	74G
FF-Tiny	50.2	64.6G
FF-Tiny-1/5	50.0	51.1G
win-Small	51.3	98G
FF-Small	51.2	87G
FF-Small-1/5	51.9	67.2G

Experiments

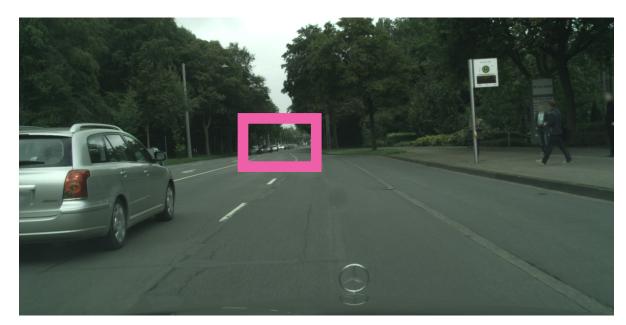
Cityscapes instance & panoptic segmentation

Model	Instance AP	Panoptic PQ (s.s.)	Backbone # Params	
AFF-Mini	40.0	62.7	6.75M	
Swin-Tiny	39.7	63.9	28M	
AFF-Tiny	42.7	65.7	27M -	
Swin-Small	41.8	64.8	50M	3.3x
AFF-Small	44.0	66.9	42.6M -	
Swin-Base	42	66.1	88M	4.6 x
Swin-Large	43.7	66.6	197M -	

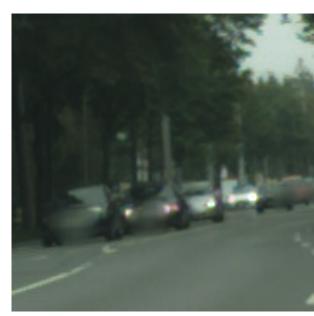
Segmentation head: Mask2Former

Qualitative results

Image

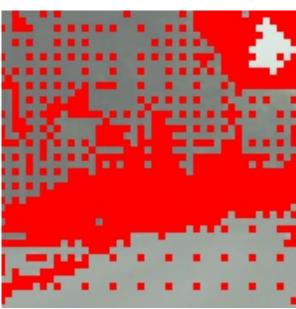


Zoomed-in image



Stage 2

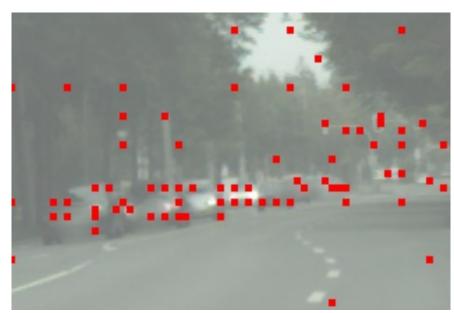
AFF's remaining tokens



Swin's prediction

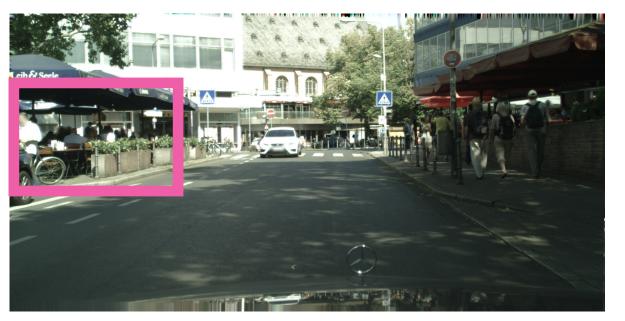
AFF's prediction

Stage 3

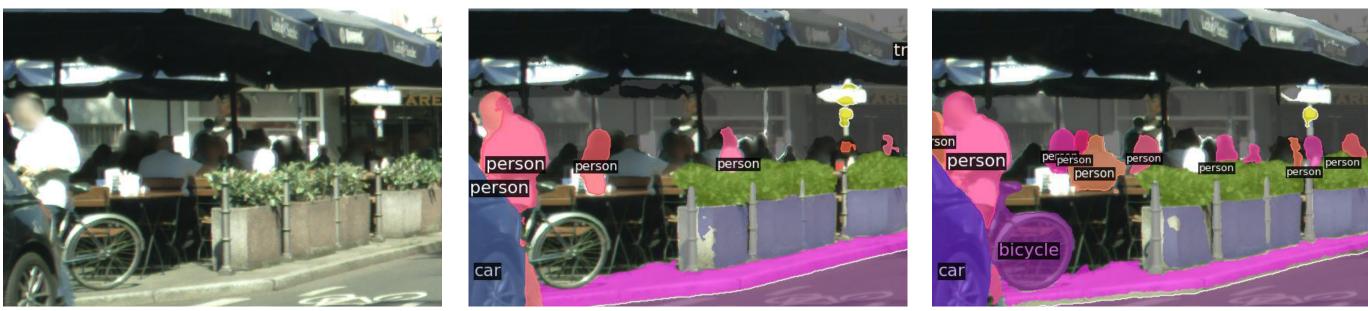


Qualitative results

Image

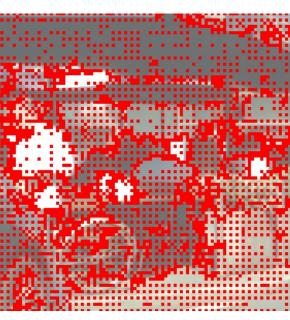


Zoomed-in image



Stage 2

AFF's remaining tokens

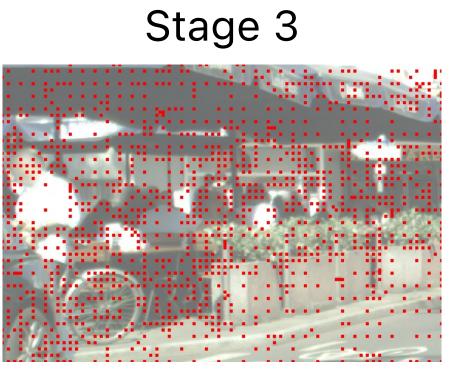


Swin's prediction

AFF's prediction

Stage 4

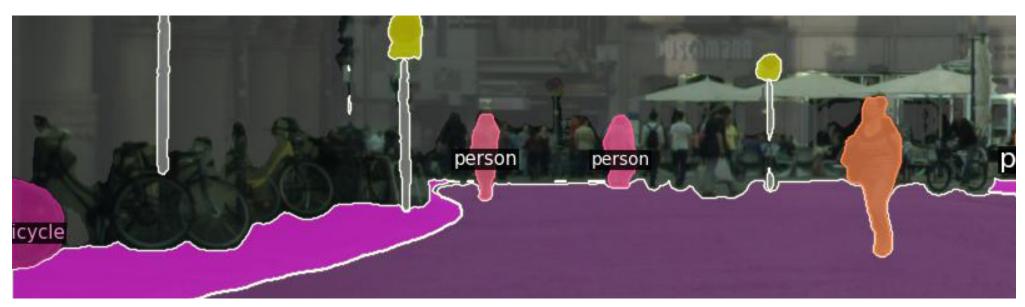




Conclusions

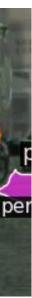
- We introduce the first adaptivedownsampling network capable of dense prediction tasks such as semantic/instance segmentation
- Flexible downsampling rate (e.g., 1/5 vs. traditional 1/4)
- Significant savings on FLOPs and significant improvement on recognition of small objects

Image



SWIN prediction

AFF prediction



TM and © 2023 Apple Inc. All rights reserved.

