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AutoFocusFormer(AFF)

Multi-stage, local-attention 
transformer, equipped with successive 
adaptive downsampling layers
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AutoFocusFormer(AFF)

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. 

Panoptic Segmentation 
With AFF backbone

Panoptic Segmentation 
With Swin backbone
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Result Highlights

On Cityscapes segmentation 

• AFF-Tiny performs on par with 
Swin-Base (3.3x larger) 

• AFF-Small performs on par with 
Swin-Large (4.6x larger) 

For all datasets, AFF saves ~30% 
FLOPs without much drop in 
performance

Image

AFF prediction

SWIN prediction
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Motivation

Natural images often have highly 
imbalanced content density 

Mainstream networks use grid 
downsampling 

• Mis-classify small objects 

• Waste computation on large 
objects
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Adaptive Models on Transformers

E.g., AdaViT, DynamicViT, A-ViT… 

• Adopt global attention 
(quadratic complexity!) 

• No actual downsampling in 
training (need gradient) 

Thus, they cannot scale to high-
resolution segmentation tasks!

Meng, Lingchen, et al. "Adavit: Adaptive vision transformers for efficient image recognition." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

AdaViT
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AFF Architecture
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AFF Clustering

We propose a fast, non-iterative, 
equal-sized clustering method for 
2D tokens 

The method is based on space-
filling curves 

Please refer to our paper for 
algorithm details!

Red dots: tokens Clusters
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AFF Local Attention

Using the equal-sized clusters, we 
define the neighborhood of a token 
by its nearest R clusters 

Overlapping neighborhoods enable 
the smooth propagation of 
information among tokens

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. 

On-grid Off-grid 
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AFF Local Attention

On each neighborhood, we apply the standard transformer self-attention:

where is the positional embedding

We further make this embedding aware of potential rotation/scale 
invariances by expanding the relative position vector:
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Adaptive Downsampling

First, for each token, we compute an 
importance score si  

fi: token feature  

l: a fully-connected layer

Importance score =

Sigmoid

Compute Importance
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Merging center selection

Second, we select top x% tokens 
according to the importance 
scores 

x% is the downsampling rate (we 
show experiment results with 1/4 
and 1/5)

Select top x% tokens
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Neighborhood Merging

Lastly, we merge the neighborhoods 
of the selected tokens  

We use a PointConv layer, 
modulated by the learnable 
importance score si’s 

The output is x% merged tokens

Wu, Wenxuan, Zhongang Qi, and Li Fuxin. "Pointconv: Deep convolutional networks on 3d point clouds." Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2019.
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Experiments

ImageNet classification
Model Top-1 Acc# ParamsFLOPs
Swin-Mini 76.9% 6.76M 1.07G
AFF-Mini 78.2% 6.75M 1.08G
AFF-Mini-1/5 77.5% 6.75M 0.72G
Swin-Tiny 81.3% 28M 4.5G
AFF-Tiny 83% 27M 4G
AFF-Tiny-1/5 82.4% 27M 2.74G
Swin-Small 83% 50M 8.7G
AFF-Small 83.5% 42.6M 8.16G
AFF-Small-1/5 83.4% 42.6M 5.69G

1/5: downsampling rate
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Experiments

ADE20K semantic 
segmentation

Segmentation head: Mask2Former

Model mIoU FLOPs
Swin-Mini 44.1 48.9G
AFF-Mini 46.5 48.3G
AFF-Mini-1/5 46.0 39.9G
Swin-Tiny 47.7 74G
AFF-Tiny 50.2 64.6G
AFF-Tiny-1/5 50.0 51.1G
Swin-Small 51.3 98G
AFF-Small 51.2 87G
AFF-Small-1/5 51.9 67.2G
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Experiments

Cityscapes instance & panoptic segmentation

Model Instance AP Panoptic PQ 
(s.s.)

Backbone # 
Params

AFF-Mini 40.0 62.7 6.75M
Swin-Tiny 39.7 63.9 28M
AFF-Tiny 42.7 65.7 27M
Swin-Small 41.8 64.8 50M
AFF-Small 44.0 66.9 42.6M
Swin-Base 42 66.1 88M
Swin-Large 43.7 66.6 197M

Segmentation head: Mask2Former

3.3x

4.6x
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Qualitative results

Image
Zoomed-in 

image
Swin’s 

prediction
AFF’s 

prediction

AFF’s remaining 
tokens

Stage 2 Stage 3 Stage 4

20



Qualitative results

Image
Zoomed-in 

image
Swin’s 

prediction
AFF’s 

prediction

AFF’s remaining 
tokens

Stage 2 Stage 3 Stage 4

21



Conclusions

• We introduce the first adaptive-
downsampling network capable of 
dense prediction tasks such as 
semantic/instance segmentation 

• Flexible downsampling rate (e.g., 1/5 
vs. traditional 1/4) 

• Significant savings on FLOPs and 
significant improvement on 
recognition of small objects

Image

AFF prediction

SWIN prediction
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