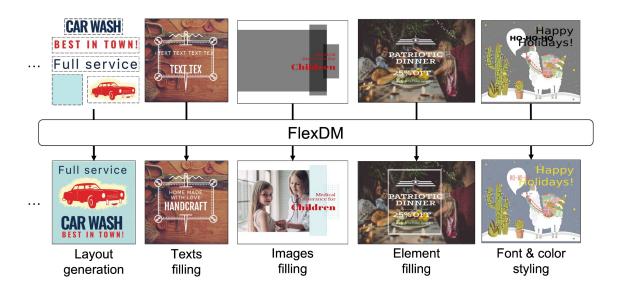


Towards Flexible Multi-modal Document Models

(Highlight)


Naoto Inoue Kotaro Kikuchi Mayu Otani Edgar Simo-Serra Kota Yamaguchi

Flexible Document Model (FlexDM)

Our work: solve many design tasks in a single model

Key Idea of FlexDM

Multi-modal masked field prediction as a unified interface

type: Text pos: (30, 90) size: (100,50)

text: GREAT \n IDEAS

image: [NULL]
font: [MASK]
color: [MASK]

GREAT IDEAS

TO TRANSFORM YOUR HOME

type: Text pos: (30, 90)

size: (100,50)

text: GREAT \n IDEAS r

image: font: Times

color: (190, 170, 60)

FlexDM Results

Input Output

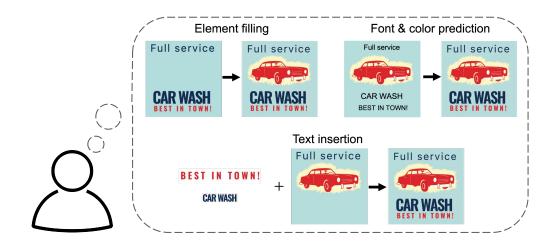
Vector Graphic Document

- A data format for making visual design (e.g., banner by Photoshop)
- Consists of a set of visual elements (+ global info) [Yamaguchi+, ICCV'21]
- Scalable, editable, human-interpretable

Rendering

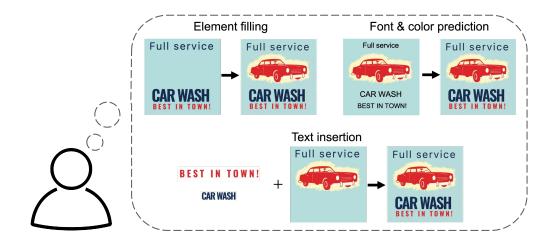
Image

Layout

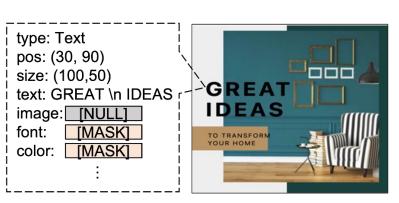

1	2	
	3	
П	4	
	5	

Vector graphic format

```
{
    "type": text, "position": [0.1, 0.6],
    "size": [0.8, 0.2], "text": "CAR WASH",
    "color": navy, "font_family": "Oswald", ...
}, ...
```

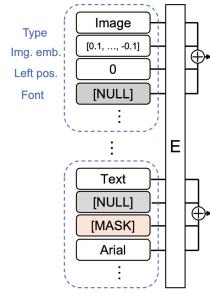


Design Tasks in Iterative Design Process

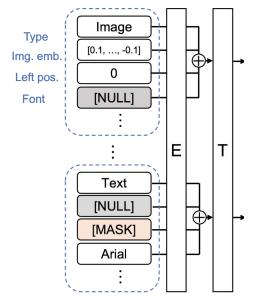

Design Tasks in Iterative Design Process

- High variety of possible actions
- Complex interaction between multi-modal elements
- → We handle design tasks in a principled manner

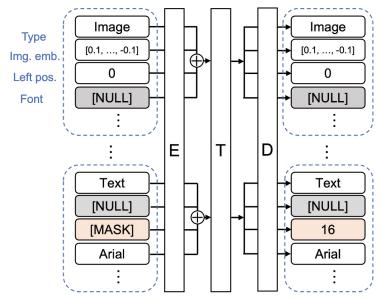
Masked Field prediction (MFP)


- Predicting arbitrary number of fields hidden by [MASK]
- Challenges
 - o How to encode/decode various type of fields?
 - How to handle larger number of fields?

type: Text
pos: (30, 90)
size: (100,50)
text: GREAT \n IDEAS
image: ____
font: ____
color: ____(190, 170, 60)

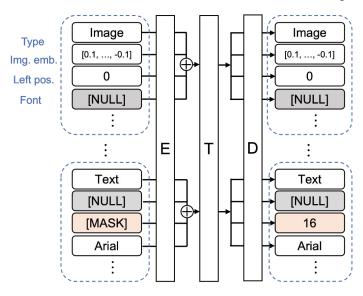


Network for Masked Field Prediction (MFP)


E: encoder

Network for Masked Field Prediction (MFP)

E: encoder, T: Transformer encoder


Network for Masked Field Prediction (MFP)

E: encoder, T: Transformer encoder, D: decoder

Challenges and solutions in MFP

- Various type of fields → attribute-specific enc. and dec.
- Large number of fields → consider interaction only in element-level

Training FlexDM

Training

- 1. In-domain pre-training (15% random masking)
- 2. Explicit multi-task learning for target design tasks

Loss: reconstruction error

Preprocess


- Quantization for numerical attributes
- Feature extraction using pre-trained models for image and text

Attributes Prediction (ATTR)

Input

Texts Prediction (TXT)

Input

Output

Element Filling (ELEM)

Input

Output

Quantitative Evaluation in Crello

Model	#par.	ELEM	POS	ATTR	IMG	TXT
Most-frequent	0.0x	0.402	0.134	0.382	0.922	0.932
BERT	1.0x	0.524	0.155	0.632	0.935	0.949
BART	1.2x	0.469	0.156	0.615	0.932	0.945
CVAE	1.0x	0.499	0.197	0.587	0.942	0.947
CanvasVAE	1.2x	0.475	0.138	0.586	0.912	0.946
Ours	1.0x	0.508	0.227	0.688	0.950	0.954
	1.0x		0.197			
	1.0x					
	5.0x					

Much better than baselines

2. Almost close to task-specific expert

Quantitative Evaluation in Crello

Model	#par.	ELEM	POS	ATTR	IMG	TXT
Most-frequent	0.0x	0.402	0.134	0.382	0.922	0.932
BERT	1.0x	0.524				
BART	1.2x					
CVAE	1.0x		0.197			
CanvasVAE	1.2x		0.138		0.912	
Ours	1.0x	0.508	0.227	0.688	0.950	0.954
	1.0x		0.197			
	1.0x					
Expert	5.0x	0.534	0.255	0.703	0.948	0.955

- 1. Much better than baselines
- 2. Almost close to task-specific expert
- 3. Both components are important

Quantitative Evaluation in Crello

Model	#par.	ELEM	POS	ATTR	IMG	TXT
Most-frequent	0.0x	0.402	0.134	0.382	0.922	0.932
BERT	1.0x	0.524				
BART	1.2x					
CVAE	1.0x		0.197			
CanvasVAE	1.2x		0.138		0.912	
Ours	1.0x	0.508	0.227	0.688	0.950	0.954
w/o multitask	1.0x	0.483	0.197	0.607	0.945	0.949
w/o pre-training	1.0x	0.499	<u>0.218</u>	<u>0.679</u>	<u>0.948</u>	<u>0.952</u>
Expert	5.0x	0.534	0.255	0.703	0.948	0.955

- 1. Much better than baselines
- 2. Almost close to task-specific expert
- 3. Both components are important

Summary

- Masked field prediction (MFP) as a unified interface
- A model handling larger number of fields and tasks efficiently
- Promising performance in various documents (e.g., banner, web, ...)

Check codes and more results at https://cyberagentailab.github.io/flex-dm/

