

# 之江实验室 THEJIANG LAB HONOR SmartMore

### Low-Light Image Enhancement via **Structure Modeling and Guidance**

Xiaogang Xu<sup>1</sup>, Ruixing Wang<sup>2</sup>, Jiangbo Lu<sup>3</sup> <sup>1</sup>Zhejiang Lab <sup>2</sup>Honor Device Co., Ltd. <sup>3</sup>SmartMore Corporation

Paper Tag: WED-AM-159



## **Preview of This Work**



#### Introduction

- > We propose a new framework by conducting structure modeling and guidance simultaneously.
- First, a novel structure modeling method with a GAN loss
- Second, a novel structure-guided enhancement approach
- > Our framework
- Consistently achieves SOTA performance on different representative benchmarks with the same structure
- Superior perceptual quality in a large-scale user study with 100 participants

#### **Motivation of Our Framework**

Structure modeling can be utilized to enhance the appearance predictions

- Structural information can enhance the image details
- Structural information help to distinguish different dark areas and build better relations among them

#### **Structure of Our Framework**

Appearance modeling  $\mathcal{A}$ , Structure Modeling  $\mathcal{S}$ 

Structure-Guided Enhancement Module  $\mathcal{E}$ 



Low-Light Image Enhancement via Structure Modeling and Guidance Xiaogang Xu, Ruixing Wang, Jiangbo Lu



0.724

21.16

0.840

24.62

0.867

21.48

0.849

#### **Structure-Aware Feature Extractor (SAFE) Evaluation Results** > Ouantitative Evaluation

 $\triangleright$  Obtain the feature gradients  $\{g_{+x}(f_i), g_{-x}(f_i), g_{+y}(f_i), g_{-y}(f_i), g_{+x,+y}(f_i), g_{+x,+$ 

 $g_{+x,-y}(f_i), g_{-x,+y}(f_i), g_{-x,-y}(f_i)\}$ 

> Spatial-varying feature extraction

 $l_i = \mathcal{F}_i^l(f_i),$  $s_i = \mathcal{F}_i^s(f_i),$  $\nabla l_i = \nabla \mathcal{F}_i^l(\nabla g(f_i)), \quad \nabla s_i = \nabla \mathcal{F}_i^s(\nabla g(f_i)),$  $\nabla \in \{ {}^{+x}, {}^{-x}, {}_{+y}, {}_{-y}, {}_{+y}, {}_{+y}, {}_{+y}, {}_{-y}, {}_{-y} \} \}$ 

> Long-short-range feature fusion

 $h_i = \mathcal{F}_i^f(l_i, s_i), \quad \nabla h_i = \nabla \mathcal{F}_i^f(\nabla l_i, \nabla s_i).$ 

 $\succ$  Fusion from different directions

 $f_{i+1} = \mathcal{F}_{i}^{g}(h_{i}, {}^{+x}h_{i}, {}^{-x}h_{i}, {}_{-y}h_{i}, {}_{+y}h_{i},$  $^{+x}_{+y}h_i, ^{-x}_{+y}h_i, ^{+x}_{-y}h_i, ^{-x}_{-y}h_i),$ 

#### **Structure-Guided Enhancement Module**

- $\triangleright$  Overall Formulation  $\widehat{I} = \mathcal{E}(I_a \oplus I | I_s) + I_a$
- Structure-Guided Feature Synthesis

#### Loss Terms

> Loss for appearance modeling

 $\mathcal{L}_{a} = \|I_{a} - \bar{I}\| + \|\Phi(I_{a}) - \Phi(\bar{I})\|,$ 

#### > Loss for structure modeling

 $\mathcal{L}_{s} = -[\bar{I}_{s} \log I_{s} + (1 - \bar{I}_{s}) \log(1 - I_{s})], \ \bar{I}_{s} = C(\bar{I}),$  $\mathcal{L}_q = \mathbb{E}_I(\log(1 + \exp(-\mathcal{D}(I_s)))),$  $\mathcal{L}_d = \mathbb{E}_I(\log(1 + \exp(-\mathcal{D}(\bar{I}_s)))) + \mathbb{E}_I(\log(1 + \exp(+\mathcal{D}(I_s)))),$ 

> Loss for SGEM  $\mathcal{L}_m = \|\widehat{I} - \overline{I}\| + \|\Phi(\widehat{I}) - \Phi(\overline{I})\|.$ 

| EG [13] | Retinex [24] | Sparse [62]<br>20.06 | DSN [70]<br>19.23 | RCTNet [17]<br>20.51 | UTVNet [71]<br>20.37 | SCI<br>20 |
|---------|--------------|----------------------|-------------------|----------------------|----------------------|-----------|
| 0.617   | 0.723        | 0.815                | 0.736             | 0.831                | 0.834                | 0.1       |
| т       | able 1. Oua  | ntitative co         | ompariso          | n on the LO          | I -real datas        | et        |

DeepUPE [44] KIND [69] DeepLPF [30] FIDE [55] LPNet [22] MIR-Net [6

0.678

0.480

| Methods | SID [3]     | DeepUPE [44] | KIND [69] | DeepLPF [30] | FIDE [55]   | LPNet [22] | MIR-Net [67] | RF [19]     | 3DLUT [68] | UNIE [14]     | LCDR [43] | LLFlow [49] |
|---------|-------------|--------------|-----------|--------------|-------------|------------|--------------|-------------|------------|---------------|-----------|-------------|
| PSNR    | 15.04       | 15.08        | 13.29     | 16.02        | 15.20       | 19.51      | 21.94        | 15.97       | 18.04      | 21.84         | 18.91     | 19.69       |
| SSIM    | 0.610       | 0.623        | 0.578     | 0.587        | 0.612       | 0.846      | 0.876        | 0.632       | 0.800      | 0.884         | 0.825     | 0.871       |
| Methods | A3DLUT [46] | Band [61]    | EG [13]   | Retinex [24] | Sparse [62] | DSN [70]   | RCTNet [17]  | UTVNet [71] | SCI [28]   | URetinex [54] | SNR [56]  | Ours        |
| PSNR    | 18.92       | 23.22        | 16.57     | 16.55        | 22.05       | 21.22      | 22.44        | 21.62       | 22.20      | 22.89         | 24.14     | 25.62       |
| SSIM    | 0.838       | 0.927        | 0.734     | 0.652        | 0.905       | 0.827      | 0.891        | 0.904       | 0.887      | 0.895         | 0.928     | 0.905       |

0.820

0.458

SCI [28

20.28

#### Table 2. Quantitative comparison on the LOL-synthetic dataset.

| Methods | SID [3]     | DeepUPE [44] | KIND [69] | DeepLPF [30] | FIDE [55]   | LPNet [22] | MIR-Net [67] | RF [19]     | 3DLUT [68] | UNIE [14]     | LCDR [43] | LLFlow [49] |
|---------|-------------|--------------|-----------|--------------|-------------|------------|--------------|-------------|------------|---------------|-----------|-------------|
| PSNR    | 16.97       | 17.01        | 18.02     | 18.07        | 18.34       | 20.08      | 20.84        | 16.44       | 20.11      | 20.67         | 18.55     | 20.33       |
| SSIM    | 0.591       | 0.604        | 0.583     | 0.600        | 0.578       | 0.598      | 0.605        | 0.596       | 0.592      | 0.602         | 0.587     | 0.611       |
| Methods | A3DLUT [46] | Band [61]    | EG [13]   | Retinex [24] | Sparse [62] | DSN [70]   | RCTNet [17]  | UTVNet [71] | SCI [28]   | URetinex [54] | SNR [56]  | Ours        |
| PSNR    | 20.32       | 19.02        | 17.23     | 18.44        | 18.68       | 18.85      | 20.34        | 20.93       | 19.09      | 21.56         | 22.87     | 23.18       |
| SSIM    | 0.595       | 0.577        | 0.543     | 0.581        | 0.606       | 0.617      | 0.601        | 0.614       | 0.585      | 0.619         | 0.625     | 0.664       |

Table 3. Quantitative comparison on the SID dataset (sRGB domain).





#### User Study

Methods

PSNR SSIM

PSNR

SSIM

13.24 0.442

18.19

0.745

Methods A3DLUT [46]

13.27

0.452

Band [61]

20.29

0.831

14.74

0.641



## **Low-light Enhancement**

### Low-light enhancement:

- Enhance the illumination and suppress the noise
- Previous methods focus on appearance modeling





## **Low-light Enhancement**

### With only appearance modeling:

- Will result in blurry outcomes and low SSIM
- We need structure modeling

#### Input Image



#### With Appearance Modeling



Structure Modeling



#### With Appearance & Structure Modeling



## **Low-light Enhancement**

### The challenges in structure modeling for low-light images:

- Highly ill-posed
- The influence of multiple degradations, e.g., noise







Noisy outcomes

*Not suitable for helping appearance modeling* 

## **Our Framework**

### In this paper, we:

- propose a new framework for low-light enhancement by conducting **structure modeling** and **guidance** simultaneously.
- design a novel **structure modeling method**, where structure-aware features are formulated and trained with a **GAN loss**.
- formulate a novel **structure-guided enhancement approach**, for appearance improvement guided by the restored structure maps.

## **Our Framework**



Appearance Modeling is a common U-Net

## **Our Framework**



Structure Modeling is implemented with a StyleGAN backbone,  $I_S = S(I) = \mathcal{F}(\mathcal{G}(I))^{\$}$ 

## Structure-Aware Feature Extractor (SAFE)

### Modify the encoder of StyleGAN for structure modeling:

- Compute gradient maps from features
- Spatially-varying feature extraction based on features and gradient maps



### Structure-Aware Feature Extractor (SAFE)

### Modify the encoder of StyleGAN for structure modeling:

- Compute gradient maps from features
- Spatially-varying feature extraction based on features and gradient maps

(1) Obtain the feature gradients  $\{g_{+x}(f_i), g_{-x}(f_i), g_{+y}(f_i), g_{-y}(f_i), g_{+x,+y}(f_i), g_{+x,-y}(f_i), g_{-x,+y}(f_i), g_{-x,-y}(f_i)\}$ 

(2) Spatial-varying feature extraction

(3) Long-short-range feature fusion

$$h_i = \mathcal{F}_i^f(l_i, s_i), \quad \bigtriangledown h_i = \bigtriangledown \mathcal{F}_i^f(\bigtriangledown l_i, \bigtriangledown s_i).$$

(4) Fusion from different directions

$$f_{i+1} = \mathcal{F}_{i}^{g}(h_{i}, {}^{+x}h_{i}, {}^{-x}h_{i}, {}_{-y}h_{i}, {}_{+y}h_{i}, {}_{+y}h_{i}, {}_{-y}h_{i}, {}_{-y}h_{i}, {}_{-y}h_{i}),$$

## Structure-Aware StyleGAN Generator (SAG)

### Equipped with SAFE, we formulate SAG:

- The features from SAFE as  $f_i, i \in [1, N]$
- Obtain w space of StyleGAN as  $w = \mathcal{M}_w(z) = \mathcal{M}_w(\mathcal{M}_z(\mathcal{P}(f_N)))$
- Feed the structural information into the generator's different layers



## Structure-Guided Enhancement Module (SGEM)

### SGEM can also be implemented as a U-Net:

- We denote SGEM as  $\mathcal{E}$
- The enhancement is denoted as  $\hat{I} = \mathcal{E}(I_a \bigoplus I | I_s) + I_a$
- The structural information is inserted via Structure Guided Convolutions (SGC) and Structure Guided Normalizations (SGN)



### **Loss Functions**

### Loss for appearance modeling:

• The loss is computed at both the pixel level and perceptual level

$$\mathcal{L}_{a} = \|I_{a} - \bar{I}\| + \|\Phi(I_{a}) - \Phi(\bar{I})\|,$$

### Loss for structure modeling:

- Consists of regression loss and GAN loss
- The GT is obtained via edge detection in normal-light data

$$\mathcal{L}_s = -[\bar{I}_s \log I_s + (1 - \bar{I}_s) \log(1 - I_s)], \ \bar{I}_s = C(\bar{I}),$$
$$\mathcal{L}_g = \mathbb{E}_I (\log(1 + \exp(-\mathcal{D}(I_s)))),$$
$$\mathcal{L}_d = \mathbb{E}_I (\log(1 + \exp(-\mathcal{D}(\bar{I}_s)))) +$$
$$\mathbb{E}_I (\log(1 + \exp(+\mathcal{D}(I_s)))),$$

### **Loss Functions**

### Loss for SGEM:

• The loss is computed at both the pixel level and perceptual level

$$\mathcal{L}_m = \|\widehat{I} - \overline{I}\| + \|\Phi(\widehat{I}) - \Phi(\overline{I})\|.$$

### **Overall Loss:**

• The weighted sum of different loss functions

$$\mathcal{L} = \lambda_1 \mathcal{L}_a + \lambda_2 \mathcal{L}_s + \lambda_3 \mathcal{L}_g + \lambda_4 \mathcal{L}_m,$$

### **Experiments**

#### **Evaluation in sRGB Domain: Quantitative analysis**

| Methods | SID [3]     | DeepUPE [44] | KIND [69] | DeepLPF [30] | FIDE [55]   | LPNet [22] | MIR-Net [67] | RF [19]     | 3DLUT [68] | UNIE [14]     | LCDR [43] | LLFlow [49] |
|---------|-------------|--------------|-----------|--------------|-------------|------------|--------------|-------------|------------|---------------|-----------|-------------|
| PSNR    | 13.24       | 13.27        | 14.74     | 14.10        | 16.85       | 17.80      | 20.02        | 14.05       | 17.59      | 20.85         | 18.57     | 19.36       |
| SSIM    | 0.442       | 0.452        | 0.641     | 0.480        | 0.678       | 0.792      | 0.820        | 0.458       | 0.721      | 0.724         | 0.641     | 0.705       |
| Methods | A3DLUT [46] | Band [61]    | EG [13]   | Retinex [24] | Sparse [62] | DSN [70]   | RCTNet [17]  | UTVNet [71] | SCI [28]   | URetinex [54] | SNR [56]  | Ours        |
| PSNR    | 18.19       | 20.29        | 18.23     | 18.37        | 20.06       | 19.23      | 20.51        | 20.37       | 20.28      | 21.16         | 21.48     | 24.62       |
| SSIM    | 0.745       | 0.831        | 0.617     | 0.723        | 0.815       | 0.736      | 0.831        | 0.834       | 0.752      | 0.840         | 0.849     | 0.867       |

Table 1. Quantitative comparison on the LOL-real dataset.

| Methods | SID [3]     | DeepUPE [44] | KIND [69] | DeepLPF [30] | FIDE [55]   | LPNet [22] | MIR-Net [67] | RF [19]     | 3DLUT [68] | UNIE [14]     | LCDR [43] | LLFlow [49] |
|---------|-------------|--------------|-----------|--------------|-------------|------------|--------------|-------------|------------|---------------|-----------|-------------|
| PSNR    | 15.04       | 15.08        | 13.29     | 16.02        | 15.20       | 19.51      | 21.94        | 15.97       | 18.04      | 21.84         | 18.91     | 19.69       |
| SSIM    | 0.610       | 0.623        | 0.578     | 0.587        | 0.612       | 0.846      | 0.876        | 0.632       | 0.800      | 0.884         | 0.825     | 0.871       |
| Methods | A3DLUT [46] | Band [61]    | EG [13]   | Retinex [24] | Sparse [62] | DSN [70]   | RCTNet [17]  | UTVNet [71] | SCI [28]   | URetinex [54] | SNR [56]  | Ours        |
| PSNR    | 18.92       | 23.22        | 16.57     | 16.55        | 22.05       | 21.22      | 22.44        | 21.62       | 22.20      | 22.89         | 24.14     | 25.62       |
| SSIM    | 0.838       | 0.927        | 0.734     | 0.652        | 0.905       | 0.827      | 0.891        | 0.904       | 0.887      | 0.895         | 0.928     | 0.905       |

Table 2. Quantitative comparison on the LOL-synthetic dataset.

| Methods | SID [3]     | DeepUPE [44] | KIND [69] | DeepLPF [30] | FIDE [55]   | LPNet [22] | MIR-Net [67] | RF [19]     | 3DLUT [68] | UNIE [14]     | LCDR [43] | LLFlow [49] |
|---------|-------------|--------------|-----------|--------------|-------------|------------|--------------|-------------|------------|---------------|-----------|-------------|
| PSNR    | 16.97       | 17.01        | 18.02     | 18.07        | 18.34       | 20.08      | 20.84        | 16.44       | 20.11      | 20.67         | 18.55     | 20.33       |
| SSIM    | 0.591       | 0.604        | 0.583     | 0.600        | 0.578       | 0.598      | 0.605        | 0.596       | 0.592      | 0.602         | 0.587     | 0.611       |
| Methods | A3DLUT [46] | Band [61]    | EG [13]   | Retinex [24] | Sparse [62] | DSN [70]   | RCTNet [17]  | UTVNet [71] | SCI [28]   | URetinex [54] | SNR [56]  | Ours        |
| PSNR    | 20.32       | 19.02        | 17.23     | 18.44        | 18.68       | 18.85      | 20.34        | 20.93       | 19.09      | 21.56         | 22.87     | 23.18       |
| SSIM    | 0.595       | 0.577        | 0.543     | 0.581        | 0.606       | 0.617      | 0.601        | 0.614       | 0.585      | 0.619         | 0.625     | 0.664       |

Table 3. Quantitative comparison on the SID dataset (sRGB domain).

### **Experiments**

#### **Evaluation in sRGB Domain: Qualitative analysis**



## **Experiments**

#### **Evaluation in RAW Domain**

| Methods | DeepUPE [44]   | SID [3]   | EEMEFN [74] | DCE [9] |
|---------|----------------|-----------|-------------|---------|
| PSNR    | 29.13          | 28.88     | 29.60       | 26.53   |
| SSIM    | 0.792          | 0.787     | 0.795       | 0.730   |
| Methods | LLPackNet [20] | FIDE [55] | DID [29]    | SGN [8] |
| PSNR    | 27.83          | 29.56     | 28.41       | 28.91   |
| SSIM    | 0.750          | 0.799     | 0.780       | 0.789   |
| Methods | RED [21]       | ABF [6]   | SNR [56]    | Ours    |
| PSNR    | 28.66          | 29.65     | 29.75       | 30.17   |
| SSIM    | 0.790          | 0.797     | 0.812       | 0.834   |



## **Experiments: Ablation Study**

**Ablation Settings** 

- 1. "Ours w/o  $\mathcal{A}$ ": remove the module of  $\mathcal{A}$ , only input image and the structure map are set as the input of  $\mathcal{E}$
- 2. "Ours w/o S": remove the module of S, the structure of two concatenated networks for appearance modeling
- 3. "Ours w/o  $\mathcal{F}$ ": replace SAFE with traditional encoder for the StyleGAN
- 4. "Ours w/o  $\mathcal{G}$ ": remove the Structure-Guided Feature Synthesis in  $\mathcal{E}$ , set output of  $\mathcal{S}$  as input of  $\mathcal{E}$
- 5. "Ours w/o S.G.": use other edge prediction network to implement S
- 6. "Ours w/o GAN": train S without GAN loss

### **Experiments: Ablation Study**

#### **Results of Ablation Study**

|                            | LOL-real |       | LOL-sy | Inthetic | SID   |       |  |
|----------------------------|----------|-------|--------|----------|-------|-------|--|
| Methods                    | PSNR     | SSIM  | PSNR   | SSIM     | PSNR  | SSIM  |  |
| Ours w/o $\mathcal{A}$     | 20.17    | 0.801 | 23.59  | 0.879    | 22.59 | 0.639 |  |
| Ours w/o ${\cal S}$        | 18.14    | 0.773 | 21.20  | 0.881    | 20.47 | 0.623 |  |
| Ours w/o ${\cal F}$        | 20.21    | 0.812 | 23.05  | 0.888    | 22.35 | 0.635 |  |
| Ours w/o ${\cal G}$        | 19.39    | 0.784 | 21.71  | 0.868    | 21.15 | 0.629 |  |
| Ours w/o S.G.              | 20.73    | 0.820 | 23.30  | 0.898    | 22.50 | 0.632 |  |
| Ours w/o GAN               | 21.28    | 0.812 | 23.17  | 0.883    | 22.14 | 0.642 |  |
| Results with $\mathcal{A}$ | 18.99    | 0.715 | 21.76  | 0.863    | 19.34 | 0.556 |  |
| Ours with noise            | 24.15    | 0.832 | 24.07  | 0.880    | 22.86 | 0.648 |  |
| Ours                       | 24.62    | 0.867 | 25.62  | 0.905    | 23.18 | 0.664 |  |

## **Experiments: Evaluation for Structural Modeling**

### **Metrics:**

- The cross-entropy (CE) between the prediction and the ground truth
- The  $L_2$  distance between the prediction and the ground truth

|                     | LOL-real |        | LOL-sy | ynthetic | SID    |        |  |
|---------------------|----------|--------|--------|----------|--------|--------|--|
| Methods             | CE       | $L_2$  | CE     | $L_2$    | CE     | $L_2$  |  |
| Ours w/o GAN        | 0.2581   | 0.3650 | 0.2144 | 0.3936   | 0.5335 | 0.5034 |  |
| Ours w/o S.G.       | 0.2923   | 0.3805 | 0.2133 | 0.3833   | 0.5035 | 0.5405 |  |
| Ours w/o ${\cal F}$ | 0.3070   | 0.3553 | 0.2795 | 0.3675   | 0.5351 | 0.4905 |  |
| Ours                | 0.2130   | 0.3042 | 0.2072 | 0.3032   | 0.4352 | 0.4541 |  |

## **Experiments: Evaluation for Structural Modeling**

### **Qualitative analysis:**



## **Experiments: User Study**

#### User study from multiple dimensions with 100 participants

- 1. Are the details easy to perceive?
- 2. Are the colors vivid?
- 3. Is the result visually realistic?
- *4. Is the result free of overexposure?*
- 5. Is the result free of noises?
- 6. What is your overall rating?

### **Experiments: User Study**



## Thanks