

GP-VTON: Towards General Purpose Virtual Try-on via Collaborative Local-Flow Global-Parsing Learning

Zhenyu Xie¹, Zaiyu Huang¹, Xin Dong², Fuwei Zhao¹, Haoye Dong³, XijinZhang², Feida Zhu², Xiaodan Liang^{1,4*} ¹Shenzhen Campus of Sun Yat-Sen University, ²ByteDance, ³Carnegie Mellon University, ⁴Peng Cheng Laboratory

Paper Tag: THU-PM-281

Contributions

- Propose a unified framework, GP-VTON, for *diverse virtual try-on scenarios*.
- Propose LFGP warping module for *semantic-correct garment deformation*.
- Introduce DGT training strategy for *distortion-free garment deformation*.
- Outperform existing SOTAs on two virtual try-on benchmarks.

Task Definition

• Given a source person and a target garment,

Task Definition

• Given a source person and a target garment, image-based virtual try-on aims to transfer the garment onto the specific person.

Motivation

- Problem of Existing Methods
 - Fail to handle *challenging inputs* (e.g., intricate pose, hard garment)

Motivation

- Problem of Existing Methods
 - Fail to handle *challenging inputs* (e.g., intricate pose, hard garment)
 - Suffer from *texture distortion* in the warped result

Motivation

- Problem of Existing Methods
 - Fail to handle *challenging inputs* (e.g., intricate pose, hard garment)
 - Suffer from *texture distortion* in the warped result
- ➢ Motivation
 - Exploit local warping flow for *semantic-correct* deformation
 - Exploit global parsing to *combine different local warped results*
 - Introduce a novel training strategy for *distortion-free* deformation

- Garment Warping Module
 - Local-Flow Global-Parsing (LFGP) Warping Module
 - Dynamic Gradient Truncation (DGT) Training Strategy
- ➤ Try-on Generator

- Garment Warping Module
 - Local-Flow Global-Parsing (LFGP) Warping Module
 - Dynamic Gradient Truncation (DGT) Training Strategy
- ➤ Try-on Generator

- Garment Warping Module
 - Local-Flow Global-Parsing (LFGP) Warping Module
 - Dynamic Gradient Truncation (DGT) Training Strategy
- ➤ Try-on Generator

- Garment Warping Module
 - Local-Flow Global-Parsing (LFGP) Warping Module
 - Dynamic Gradient Truncation (DGT) Training Strategy
- ➤ Try-on Generator

• LFGP Warping Module consists of a person encoder, a garment encoder and cascade local-flow global-parsing estimation blocks.

• Each LFGP estimation block consist of the two flow estimation blocks and one parsing estimation block.

• The flow estimation block takes as inputs the person feature, garment feature and the previous estimated flow, then outputs the current estimated flow .

• The parsing estimation block takes as inputs the person feature, garment feature and the previous estimated flow, then outputs the estimated parsing.

DGT Training Strategy

• Out DGT training strategy **dynamically penalized the overlapping region** in warped garment according to the **wearing style** of the person image.

- **Red region:** the warped result will be penalized and the **gradient will be backpropagated**.
- Green region: the warped result will be neglected and the gradient will be truncated.

DGT Training Strategy

• Out DGT training strategy **dynamically penalized the overlapping region** in warped garment according to the **wearing style** of the person image.

$$R_{style} = \frac{R^{warped}}{R^{flat}} \quad (1)$$

$$R^* = \frac{H^*}{W^*}.$$
 (2)

- **Red region:** the warped result will be penalized and the gradient will be backpropagated.
- Green region: the warped result will be neglected and the gradient will be truncated.

• Qualitative Comparisons on VITON-HD dataset

• Qualitative Comparisons on DressCode dataset

• Quantitative Comparisons on VITON-HD and DressCode dataset

Method	SSIM \uparrow	$FID\downarrow$	LPIPS \downarrow	mIoU↑	$\mathrm{HE} \uparrow$
PF-AFN [12]	0.8858	9.475	0.0871	0.8412	14.9%
FS-VTON [19]	0.8829	9.552	0.0906	0.8357	8.80%
HR-VITON [29]	0.8623	16.21	0.1094	0.6949	9.10%
SDAFN [1]	0.8821	9.400	0.0922	0.5927	16.3%
GP-VTON (Ours)	0.8939	9.197	0.0799	0.8764	50.9%

 Table 1. Quantitative comparisons on VITON-HD dataset [6]

Dataset	DressCode-Upper			DressCode-Lower				DressCode-Dresses							
Method	SSIM ↑	$FID\downarrow$	LPIPS \downarrow	mIoU ↑	HE↑	SSIM ↑	$\mathrm{FID}\downarrow$	LPIPS \downarrow	mIoU ↑	HE↑	SSIM \uparrow	$\mathrm{FID}\downarrow$	LPIPS \downarrow	mIoU ↑	HE ↑
PF-AFN [12]	0.9454	14.32	0.0380	0.8392	14.0%	0.9378	18.32	0.0445	0.9463	12.3%	0.8869	13.59	0.0758	0.8743	15.0%
FS-VTON [19]	0.9457	13.16	0.0376	0.8381	5.33%	0.9381	17.99	0.0438	0.9478	14.7%	0.8876	13.87	0.0745	0.8760	8.33%
HR-VITON [29]	0.9252	16.86	0.0635	0.6660	3.00%	0.9119	22.81	0.0811	0.8670	2.67%	0.8642	16.12	0.1132	0.7209	2.33%
SDAFN [1]	0.9379	12.61	0.0484	0.5046	11.3%	0.9317	16.05	0.0549	0.4543	13.3%	0.8776	11.80	0.0852	0.5945	19.3%
GP-VTON (Ours)	0.9479	11.98	0.0359	0.8766	66.3%	0.9405	16.07	0.0420	0.9601	57.0%	0.8866	12.26	0.0729	0.8951	55.0%

Table 2. Quantitative comparisons on DressCode dataset [32]

• Ablation Study

Figure 8. Ablation studies on the effectiveness of (A) the global parsing during the parts assembling process and (B) the dynamic gradient truncation training strategy.

• Ablation Study

Figure 8. Ablation studies on the effectiveness of (A) the global parsing during the parts assembling process and (B) the dynamic gradient truncation training strategy.

٠

Method	LF	GT	DGT	SSIM \uparrow	LPIPS \downarrow	mIoU↑	$R_{diff}\downarrow$
LFGP †	X	X	×	0.9016	0.0950	0.8412	0.3058
LFGP *	✓	X	×	0.9039	0.0911	0.8784	0.3003
LFGP *	✓	✓	×	0.9053	0.0900	0.8774	0.2409
LFGP	1	X	1	0.9050	0.0884	0.8764	0.1655

Table 3. Ablation study of the Local FLow (LF), Gradient Truncation (GT), and Dynamic Gradient Truncation (DGT) on the VITON-HD dataset [6].

Hight-width Difference Metric: $R_{diff} = |R^{warped} - R^{flat}|$

Thanks for Listening

