

Structure Aggregation for Cross-Spectral Stereo Image Guided Denoising

Zehua Sheng¹, Zhu Yu¹, Xiongwei Liu¹, Si-Yuan Cao¹, Yuqi Liu¹, Hui-Liang Shen¹, Huaqi Zhang²

¹Zhejiang University

²vivo Communication Company Ltd.

Poster: WED-PM-157

Noisy Image

Denoised Image

It can be better.

Near-Infrared Lamp

How do we obtain paired target and guidance images?

But how can we apply them into portable devices?

Portable Devices

[1] Enhancing photographs with near infra-red images. -CVPR'08

[2] An integrated enhancement solution for 24-hour colorful imaging. -AAAI'20

How do we obtain paired target and guidance images?

Camera V Visible Light Visible Light Light Source Near Infra-red Light Simulation / Hot Filter Mirror NIR Light Empty Reflection Object Motorized Rotator Camera Camera N

Stereo system.

with Beam Splitter [1]

with Rotator [2]

[1] Enhancing photographs with near infra-red images. -CVPR'08

[2] An integrated enhancement solution for 24-hour colorful imaging. -AAAI'20

OVERVIEW

How can we take the advantage of unaligned guidance information?

Considering the problem of cross-modality and image degradation, is explicit image alignment still an essential step?

STEP II

Our proposed SANet

REVISITING GUIDED FILTERING [1]

Given a noisy image Y and an aligned guidance image G, the clean image X can be estimated by a spatially variant linear representation model of G.

 $\widehat{\mathbf{X}} = \mathbf{A} \odot \mathbf{G} + \mathbf{B}$

⊙: Hadamard Product $\widehat{\mathbf{X}}(i,j) = \mathbf{A}(i,j) \cdot \mathbf{G}(i,j) + \mathbf{B}(i,j)$ Target image Target image Filtering result Filtering result Guidance image Guidance image Smoothing **Detail Transferring**

[1] Guided image filtering. -ECCV'10, TPMAI'12

REVISITING GUIDED FILTERING [1]

It's simple and effective. But it requires input images to be structurally consistent.

$$\widehat{\mathbf{X}}(i,j) = \mathbf{A}(i,j) \cdot \mathbf{G}(i,j) + \mathbf{B}(i,j)$$

Weight A has the function of transferring structures from the guidance image, but struggles to judge whether the transfer is appropriate.

[1] Guided image filtering. -ECCV'10, TPMAI'12

PROBLEM FORMULATION

For stereo camera systems, the captured image pairs are structurally inconsistent due to disparity.

Target Image

Guidance Image

PROBLEM FORMULATION

Our real purpose is to obtain two structurally aligned images.

Do we still need to obey the one-to-one correspondence policy in stereo matching?

Target Image

Guidance Image

The corresponding pixel in the guidance image is among the candidates restricted by the maximum disparity.

Some candidates are actually quite similar due to the <u>structural redundancy</u> of natural images.

PROBLEM FORMULATION

How about aggregating these candidates together rather than selecting a single pixel?

Our proposed guided denoising model:

$$\widehat{\mathbf{X}}(i,j) = \sum_{d=0}^{D} \mathbf{W}_{d}(i,j) \cdot \mathbf{G}(i-d,j) + \mathbf{B}(i,j)$$

To enable the aggregation process to focus more on structural correspondence:

Scale Weight Perceptual Weight *a.k.a.* Structure Aggregator

$$\widehat{\mathbf{X}}(i,j) = \mathbf{W}^{S}(i,j) \cdot \sum_{d=0}^{D} \mathbf{W}_{d}^{P}(i,j) \cdot \mathbf{G}(i-d,j) + \mathbf{B}(i,j)$$

 $= \mathbf{W}^{S}(i,j) \cdot \mathbf{U}(i,j) + \mathbf{B}(i,j)$
Structure Map

The denoising process is conducted in two stages: Structure Aggregation & Guided Denoising.

STAGE I: STRUCTURE AGGREGATION

Aggregating non-local information to generate the structure map that is structurally aligned with the target image:

$$\mathbf{U}(i,j) = \sum_{d=0}^{D} \mathbf{W}_{d}^{P}(i,j) \cdot \mathbf{G}(i-d,j)$$

STAGE I: STRUCTURE AGGREGATION

Network Architecture:

Loss Function:

 $\mathcal{L}_{SA}(\mathbf{U}, \mathbf{X}) = VGGPerceptual(\mathbf{U}, \mathbf{X})$

STAGE I: STRUCTURE AGGREGATION

Our structure aggregation strategy is robust to noise:

[DASC] DASC: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence. -CVPR'15

Shifted Guidance Image

Perceptual Weight

$$d = 0$$

Noisy Target Image

Estimated Structure Map

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image

$$d = 8$$

Noisy Target Image

Aggregate

d = 9

Noisy Target Image

Aggregate

Noisy Target Image

Shifted Guidance Image

11

Perceptual Weight

$$d =$$

Noisy Target Image

Aggregate

Noisy Target Image

Noisy Target Image

Shifted Guidance Image

Perceptual Weight

$$d = 14$$

Noisy Target Image

Aggregate

Noisy Target Image

Noisy Target Image

Shifted Guidance Image

Perceptual Weight

$$d = 17$$

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image

Noisy Target Image