TOPLight: Lightweight Neural Networks with Task-Oriented Pretraining for Visible-Infrared Recognition

Hao Yu(1), Xu Cheng*(1), Wei Peng(2)

(1)-School of Computer Science, Nanjing University of Information Science and Technology, China

(2)-Department of Psychiatry and Behavioral Sciences, Stanford University, USA

Paper tag :TUE-AM-337

Quick preview

Motivations

- Solve the visible-infrared recognition task efficiently and device friendly.
- Make the model easy and quick to train, finetune, and deploy.

Three steps to understand our solutions

Step-1 : Task-oriented pretraining for VI recognition **Step-2** : Unify weights Task-oriented augmentation Dual-path training ImageNet Colour Augmentations $\hat{x}_1 \& \hat{x}_2$ Generic Jniform sou Bloc ImageNet nentations $\hat{c}_1 \& \hat{x}_2$ Texture Augmentation Step-3 : Training on VI datasets Visible VI datasets re-embedding Infrared Fine-Grained Dependency Reconstruction Module

- How to?
- Use lightweight backbones instead of the ResNet-50.
- Improve the pretraining strategy rather than pile up many modules.

Results

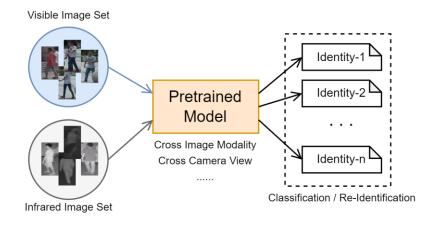
		FLOPs	SYSU	MM01	Reg	,DB
	Methods	(M)	r=1	mAP	r=1	mAP
uo	ResNet-50	3562	56.98	54.72	76.86	71.30
Convention	ConvNeXt-Tiny	3620	58.72	55.31	78.25	72.64
nve	Vit-B	5689	52.17	51.81	75.31	70.37
Co	Swin-Tiny	3287	58.24	55.16	78.39	72.68
	ShuffleNetV2-1.0×	139	41.88	41.94	67.83	64.85
	+TOP & FDR	177	55.71	52.63	79.82	66.36
	ShuffleNetV2-1.5 \times	265	47.39	47.81	70.15	65.28
	+TOP & FDR	371	63.35	60.81	84.13	76.98
pt	GhostNet-1.0×	150	42.53	42.94	71.28	64.40
eig	+TOP & FDR	189	58.54	55.19	83.26	77.16
Itw	GhostNet-1.3×	281	50.89	47.92	72.51	65.98
Lightweight	+TOP & FDR	395	66.76	64.01	85.51	79.95
	MobileNetV3-S	104	40.92	42.51	62.77	58.31
	+TOP & FDR	130	54.75	50.26	75.53	70.17
	MobileNetV3-L	250	47.81	47.06	71.26	65.66
	+TOP & FDR	362	66.14	63.80	84.15	79.26

- 1. Prepare a lightweight network using the task-oriented pretraining strategy.
- 2. Use the uniform soup to make the structure best for VI training.
- 3. Training (finetuning) on VI datasets with the FDR module.

- Make lightweight networks better than conventional deep networks.
- Around 10x faster than previous solutions.

Intro

• What is visible-infrared recognition?



• Shortcoming in existing work

Too heavy to deploy on edge devices

• Potential solutions

Use ImageNet pretrained lightweight backbones instead of the commonly used ResNet-50 for feature extraction.

• Issue

Huge performance gap

Model	Top-1 on ImageNet-1k	Rank-1 on SYSU-MM01
ResNet-50	78.8	56.98
MobileNetV3-L	75.2(↓ 3.6)	47.81(↓ 9.71)

• Why?

- 1. The ImageNet is a pure visible dataset.
- 2. Few learnable parameters, few learnt visual patterns.

Colour-related prior knowledge is dominant!

Our solution: Task-oriented pretraining

• What is the difference between existing pretrain methods and ours ?

P1:

- 1. Existing: Prepare for all downstream tasks
- 2. Ours: Prepare for VI recognition only.

P2 :

- 1. Existing: Pretrain->Finetune
- 2. Ours: (Pretrain->Adapt)->Finetune

P3 :

- 1. Existing: From One-path to Dual-path
- 2. Ours: From Dual-path to Dual-path

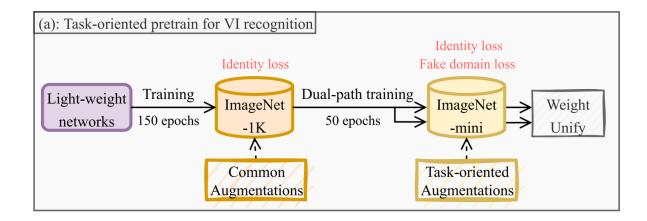
What does TOP do?

During the pretrain stage, we hope to

- (1) Let the network learn prior knowledge related to infrared images.
- (2) Disturb the color-prior knowledge to make the network pay more attention to the modality-shared patterns.
- (3) Let the network know how to extract shared patterns from two groups of "heterogenous features" to identify them well.

• How to?

- 1. Task-oriented Augmentation
- \rightarrow Simulate the visual differences in VI scenes and disturb the colour information
- 2. Dual-path training with fake domain loss
- ightarrow Improve the "heterogenous feature" represent and embed capacity



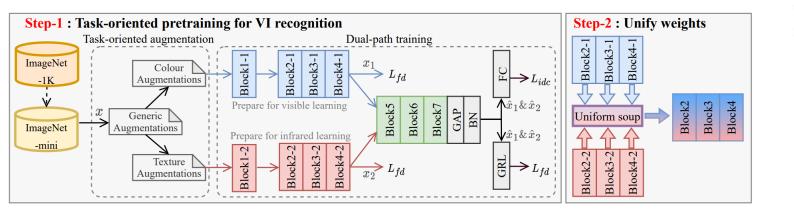
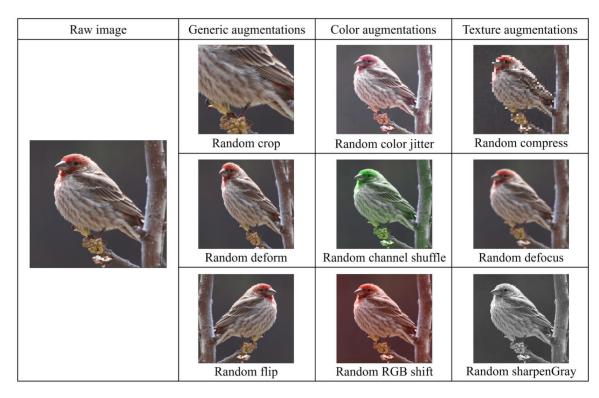


Table 1. Detailed structures of each Block. We package the entire mobileNetV3-Large into Block1-7 without overlap.

Block partitions on MobileNetV3-large									
Layer name	Structures	Output size							
Block1	$\operatorname{conv}(3 \times 3, 2)$, $\operatorname{bneck}(3 \times 3, 1)$	16×112^{2}							
Block2	$bneck(3 \times 3, 2)$	24×56^2							
Block3	$bneck(3 \times 3, 1)$	24×56^2							
Block4	$bneck(5 \times 5, 2), bneck(5 \times 5, 1)*2$	40×28^2							
Block5	bneck($3 \times 3, 2$), bneck($3 \times 3, 1$)*5	112×14^2							
Block6	$bneck(5 \times 5, 2), bneck(5 \times 5, 1)*2$	160×7^2							
Block7	$conv(1 \times 1, 1)*3$	1280×7^2							

- Firstly, we pretrain our network on ImageNet-1k with identity-loss and common augmentations (Crop+Flip).
- Secondly, we package the entire trained network (example shows the MobileNetV3-L) into Block1-Block7. Then, for the Block1-Block4, we initialize them twice with the same pretrain weights to make the dual-path network.
- Thirdly, we retrain the dual path network on ImageNet-mini, with taskoriented augmentation to create visual differences between each path. During training, the identity-consistency loss (L_{-idc}) and fake domain loss (L_{fd}) are adopted to supervise the overall network.
- Finally, after the retrain on ImageNet-mini, we unify the weights of Block(2,3,4)-1 and Block(2,3,4)-2 via Uniform Soup. That makes the final dual-path network used in VI datasets only have two stem blocks (Block1-1, Block1-2).



Original image

Colour augmented Texture augmented

Images in VI-ReID

Raw image	Generic augmentations	Color augmentations	Texture augmentations
	Random crop	Random color jitter	Random compress
	Random deform	Random channel shuffle	Random defocus
	Random flip	Random RGB shift	Random sharpenGray

Why task-oriented augmentation?

- The **generic DAs** aim to increase the broad diversity ٠
- The **colour DAs** are designed to disturb the regularity of colour-prior information and are only imposed on the branch prepared for visible learning.
- The **texture DAs** are designed to to remove the colour information and change the texture styles only in the branch prepared for infrared learning.
- Combining them all, we aim to simulate the visual differences in the real VI recognition scene and train the dual-path network to handle them during the pretraining stage. E.g., in this manner, two stem blocks are trained for extracting the modality-prior irrelevant patterns, like global shapes and the relative position of local objects.

Why we need fake domain loss?

٠

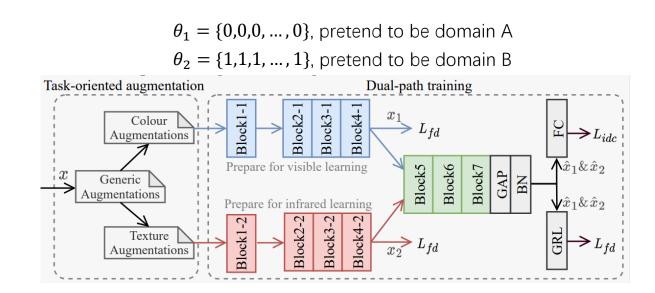
٠

Just in the above manner, the network may still lazily learn from one path to avoid feature embedding. Meanwhile, the visual differences made via augmentations are scanty to simulate the actual domain conflict during training. Thus, we proposed the fake domain loss to perform the self-against learning, which impels the network to learn domain knowledge from both paths.

$$L_{fd}^1 = L_d(\mathbf{x}_1, \mathbf{d}_1) + L_d(GRL(\hat{\mathbf{x}}_1), \mathbf{d}_1),$$

$$L_{fd}^2 = L_d(\mathbf{x}_2, \mathbf{d}_2) + L_d(GRL(\hat{\mathbf{x}}_2), \mathbf{d}_2),$$

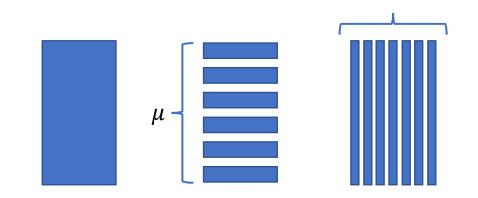
- In this manner, we create two contradictory learning procedures: the positive domain constraints are set on $x_1 \& x_2$, which force them to be representative for the fake domain we pretended. Meanwhile, with reserved gradients, inversed domain constraints are set on $\hat{x}_1 \& \hat{x}_2$, which encourage the final features after Block7 to be domain-shared.
- During this procedure, Block(2,3,4)-1 and Block(2,3,4)-2 are trained to extract two types of strongly distinguished features. In comparison, Block(5,6,7) are trained to embed these two types of "heterogenous features" and find their common ground.

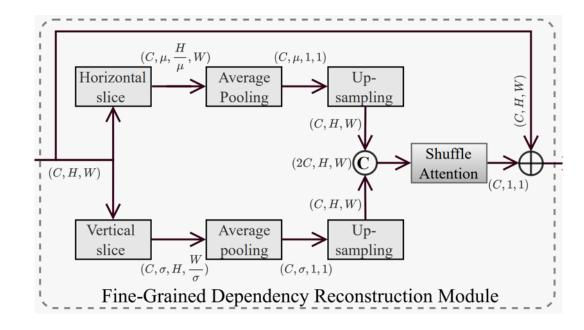


The icing on the cake: Fine-grained dependency reconstruction module

 This module intends to help lightweight networks build cross-modality correlations effectively. The core motivation is to break the original dependencies, and then build the modality-shared one. It can be summarized as two parts: The spatial modelling part (before shuffle attention) and channel relation reasoning part (shuffle attention).

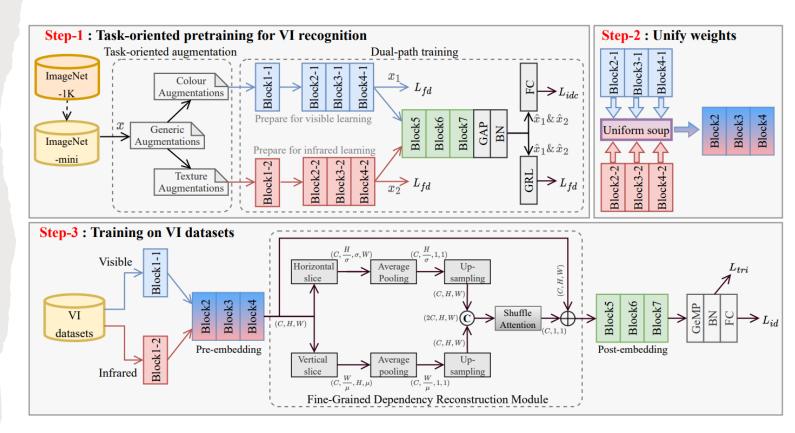
- For the first part, we first slice the original features into two types of finegrained features : horizontal and vertical. They are respectively concated in the second dimension. Then, we use the average pooling operation to concentrate the sliced spatial information, which converts the original spatial maps into vectors. The procedure breaks the original spatial dependencies among each fine-grained regions.
- After that, two independent Up-sampling layers are adopted to reconstruct the spatial maps according to two types of directional vectors. The "embedding with up-sampling" scheme intends to fully discover the modality-shared patterns from the re-enlarged regions fully.
- Finally, we concat these two types of features in the channel dimension and fed them into the shuffle attention module to perform channel relation reasoning.





The Overall Pipeline of This Paper

- Contributions
 - We proposed a task-oriented pretraining strategy for VI recognition.
 - We proposed a fine-grained dependency reconstruction module for VI recognition.
 - We make the lightweight networks competitive with the regulars for VI recognition.
 - Our methods reach the current SOTA level with nearly 1/10 FLOPs using common identity and triplet loss.



Ablation Experiments

Table 4. Experimental results on different lightweight networks and conventional deep networks.

		FLOPs	SYSU-	MM01	Reg	gDB
	Methods ResNet-50 ConvNeXt-Tiny Vit-B Swin-Tiny ShuffleNetV2-1.0× +TOP & FDR ShuffleNetV2-1.5× +TOP & FDR GhostNet-1.0× +TOP & FDR GhostNet-1.3× +TOP & FDR	(M)	r=1	mAP	r=1	mAP
u	ResNet-50	3562	56.98	54.72	76.86	71.30
Convention	ConvNeXt-Tiny	3620	58.72	55.31	78.25	72.64
nve	Vit-B	5689	52.17	51.81	75.31	70.37
Õ	Swin-Tiny	3287	58.24	55.16	78.39	72.68
	ShuffleNetV2-1.0×	139	41.88	41.94	67.83	64.85
	+TOP & FDR	177	55.71	52.63	79.82	66.36
	+TOP & FDR ShuffleNetV2-1.5× +TOP & FDR	265	47.39	47.81	70.15	65.28
	+TOP & FDR	371	63.35	60.81	84.13	76.98
Ę	GhostNet-1.0×	150	42.53	42.94	71.28	64.40
eig.	+TOP & FDR	189	58.54	55.19	83.26	77.16
Itw	GhostNet-1.3×	281	50.89	47.92	72.51	65.98
Lightweight	+TOP & FDR	395	66.76	64.01	85.51	79.95
	MobileNetV3-S	104	40.92	42.51	62.77	58.31
	+TOP & FDR	130	54.75	50.26	75.53	70.17
	MobileNetV3-L	250	47.81	47.06	71.26	65.66
	+TOP & FDR	362	66.14	63.80	84.15	79.26

Table 5. Evaluation of spatial modelling methods and channel relation reasoning methods in the FDR module. "u." and "cs." respectively denote the up-sampling and channel shuffle operations.

(a): Im	(a): Impact on Different Spatial Modelling Methods												
	S	YSU-MM	01	RegDB									
Methods	r=1	mAP	mINP	r=1	mAP	mINP							
GAP	62.89	59.79	45.84	82.88	76.24	61.92							
Context [2]	61.37	57.52	46.08	81.56	74.49	62.11							
HAP [38]	62.92	58.13	47.84	82.98	76.20	62.77							
$H_s + V_s$ (w/o u.)	63.45	59.75	49.61	83.94	78.82	63.21							
$H_s + V_s$	66.14	63.80	49.76	84.15	79.26	63.86							
(b): Impact of	n Differer	nt Channel	Relation	Reasoning	Methods.								
	S S	YSU-MM	01		RegDB								
Methods	r=1	mAP	mINP	r=1	mAP	mINP							
SE [16]	62.91	59.70	45.78	82.79	77.45	62.34							
CBAM [33]	61.79	56.88	45.25	83.41	77.28	62.96							
SA (w/o cs.)	62.81	58.10	45.76	82.75	76.12	62.56							
SA	66.14	63.80	49.76	84.15	79.26	63.86							

Table 3. Evaluation of each proposed component on two VI-ReID datasets. "Augs." indicates the augmentations. G, C and T denote the generic, colour, and texture augmentations, respectively. In the FDR module, H_s and V_s denote the horizontal and vertical slices with up-sampling. SA is the shuffle attention module. Rank (r) (%), mAP (%) and mINP (%) are reported.

		Task-orie	nted pret	training st	age	VI ti	raining	stage	SVSU MM01 (all search)		_					
No.	A	ugs.	L	oss functio	ons	FI	OR mod	ule	SYSU-MM01 (all-search)		Reg	RegDB (visible-to-infrared)				
	G	C+T	L_{id}	L_{idc}	L_{fd}	H_s	V_s	SA	r=1	r=10	mAP	mINP	r=1	r=10	mAP	mINP
1									47.81	89.71	47.06	33.48	71.26	89.94	65.66	48.50
2	\checkmark		\checkmark						43.28	85.96	45.56	31.10	70.73	88.52	65.65	48.41
3	\checkmark	\checkmark	 ✓ 						49.85	89.74	47.56	35.52	71.32	89.91	65.67	48.49
4	\checkmark	\checkmark		\checkmark					54.28	92.11	52.94	41.29	75.31	92.64	68.78	52.16
5	\checkmark	\checkmark		\checkmark	\checkmark				62.41	94.12	59.06	45.13	82.75	94.13	76.21	61.84
6	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	62.89	94.26	59.79	45.84	82.88	94.19	76.24	61.92
7	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	63.95	95.28	60.09	46.80	83.07	94.48	76.55	62.20
8	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	64.04	95.41	61.12	46.92	83.22	94.69	77.01	63.16
9	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	66.14	96.03	63.80	49.76	84.15	94.98	79.26	63.86

Comparison with SOTAs in VI ReID

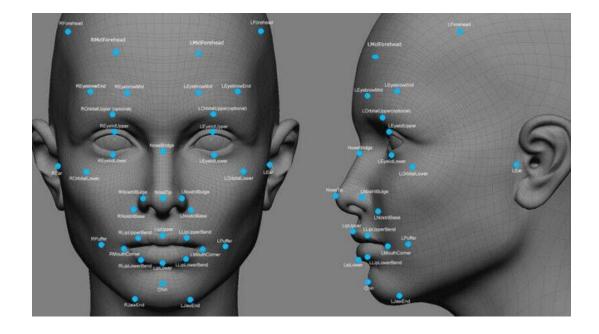
	Details				All-search	ı			Indoor-search			
Methods	Backbone	FLOPs (M)	r=1	r=10	r=20	mAP	mINP	r=1	r=10	r=20	mAP	mINP
Zero-pad [35]	ResNet50	>3562	14.80	54.12	71.33	15.95	_	20.58	68.38	85.79	26.92	_
JSIA [30]	ResNet50+GAN	>4133	38.10	80.70	89.90	36.90	_	43.80	86.20	94.20	52.90	_
AGW [42]	ResNet50	>3562	47.50	84.39	92.14	47.65	35.30	54.17	91.14	95.98	62.97	59.23
X-Modal [19]	ResNet50	>3562	49.90	89.80	96.00	50.70	_	-	_	_	_	_
DMiR [38]	ResNet50	>3562	50.54	88.12	94.86	49.29	_	53.92	92.50	97.09	62.49	_
FBP-AL [32]	ResNet50	>3562	54.14	86.04	93.03	50.20	_	-	_	_	_	_
DDAG [41]	ResNet50	>3562	54.75	90.39	95.81	55.02	39.62	61.02	94.06	98.41	67.98	62.61
HAT [43]	ResNet50	>3562	55.29	92.14	97.36	53.89	_	62.10	95.75	99.20	70.84	_
LBA [26]	ResNet50	>3562	55.41	_	_	54.14	_	58.46	_	_	66.33	_
TSME [21]	ResNet50	>3562	64.23	95.19	98.73	61.21	_	64.80	96.92	99.31	71.53	_
SPOT [4]	ResNet50+ViT	>4810	65.34	92.73	97.04	62.25	48.86	69.42	96.22	99.12	74.63	70.48
TOPLight (Ours)	MobileNetV3-L	= 362	66.14	96.03	97.68	63.80	49.76	72.41	97.54	99.23	76.11	71.43
TOPLight (Ours)	GhostNet-1.3×	= 395	66.76	96.23	98.70	64.01	50.18	72.89	97.93	99.28	76.70	71.95

Table 7. Comparison with the state-of-the-arts on RegDB [25]. Metrics of Rank at r (%), mAP (%) and mINP (%) are reported.												
Details				Visible-to-Infrared					Infr	ared-to-Vi	sible	
Methods	Backbone	FLOPs (M)	r=1	r=10	r=20	mAP	mINP	r=1	r=10	r=20	mAP	mINP
Zero-pad [35]	ResNet50	>3562	17.75	34.21	44.35	18.90	_	16.63	34.68	44.25	17.82	_
JSIA [30]	ResNet50+GAN	>4133	48.50	_	_	49.30	_	48.10	_	_	48.90	_
AGW [42]	ResNet50	>3562	70.05	86.21	91.55	66.37	50.19	70.49	87.21	91.84	65.90	51.24
X-Modal [19]	ResNet50	>3562	62.21	83.13	91.72	60.18	_	_	_	_	_	_
DMiR [38]	ResNet50	>3562	75.79	89.86	94.18	69.97	_	73.93	89.87	93.98	68.22	_
FBP-AL [32]	ResNet50	>3562	73.98	89.71	93.69	68.24	_	70.05	89.22	93.88	66.61	_
DDAG [41]	ResNet50	>3562	69.34	86.19	91.49	63.46	49.24	68.06	85.15	90.31	61.80	48.62
HAT [43]	ResNet50	>3562	71.83	87.16	92.16	67.56	_	70.02	68.45	91.61	66.30	_
LBA [26]	ResNet50	>3562	74.17	_	_	67.64	_	72.43	_	_	65.46	_
SPOT [4]	ResNet50+ViT	>4810	80.35	93.48	96.44	72.46	56.19	79.37	92.79	96.01	72.26	56.06
GECNet [48]	ResNet50+GAN	>4350	82.33	92.72	95.49	78.45	_	78.93	91.99	95.44	75.58	_
TOPLight (Ours)	MobileNetV3-L	=362	84.15	94.98	96.58	79.26	63.86	80.94	92.85	96.37	76.10	59.33
TOPLight (Ours)	GhostNet-1.3 \times	=395	85.51	94.99	96.70	79.95	<u>63.85</u>	<u>80.65</u>	92.81	<u>96.32</u>	<u>75.91</u>	<u>59.26</u>

Comparison with SOTAs in VI Face Recognition

Table 8. Evaluation on two VI-FR datasets. CA is channel augmentation [40]. B is the LightCNN-29 baseline. Rank at 1 accuracy (%) and false acceptance rate (F: %) are reported.

		Oulu [5]	BUAA [17]					
Methods	r=1	F:1%	F:0.1%	r=1	F:1%	F:0.1%			
IDR [13]	94.3	73.4	46.2	94.3	93.4	84.7			
VSA [44]	99.9	96.8	82.3	98.0	98.2	92.5			
PACH [8]	100	97.9	88.2	98.6	98.0	93.5			
B [36]	100	97.9	87.0	98.0	97.7	93.7			
B+CA [40]	100	98.9	91.7	98.3	98.2	94.5			
B+TOP	100	98.8	91.5	98.3	98.1	94.5			
B+TOP+FDR (Ours)	100	98.9	91.7	98.3	98.2	94.6			



Thanks!