

Gaussian Label Distribution Learning for Spherical Image Object Detection

Hang Xu¹, Xinyuan Liu², Qiang Zhao^{2*}, Yike Ma², Chenggang Yan¹, Feng Dai^{2*}

¹Hangzhou Dianzi University, Hangzhou, China ²Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Vancouver, Canada. June 18-22, 2023. (TUE-AM-098)

- Ln-norm loss has two intrinstic flaws for object objection on spherical images, i.e., independent optimization & inconsistency with IoU-metric.
- We convert spherical boxes into Gaussian Distribution on tangent plane, and design sample selection strategy (GLDL-ATSS) and joint-optimization regression loss (GLDL-Loss) based on distribution distance GLDL which is more consistent with IoU.

JUNE 18-22. 2023 JUNE 18-22. 2023 JUNE 18-22. 2023 Spherical/Panoramic Image

- Spherical/Panoramic image is a natural extend of comon planar image.
- \bullet It has the whole 360 $^\circ\,$ view with richer information and higher practice value.

Environment Perception

Visual Question&Answer

Security Tracking

JUNE 18-22. 2023 JUNE 18-22. 2023 JUNE 18-22. 2023 Spherical Bounding Box VANCOUVER, CANADA Spherical Bounding Box

- Spherical bounding box is defined as ($\theta, \phi, \alpha, \beta, \gamma$).
- $P(\theta, \phi)$ is the tangent point of the sphere and rectangular tangent plane.
- α and β are the horizontal and vertical fields of view of the spherical bounding box.

 Moving spherical boxes without L1 change maybe causes sharp IoU change, different from planar boxes.

Gaussian Label Distribution Learning

- Gaussian distributions of spherical bounding boxes are constructed.
- The dynamic sample selection strategy (GLDL-ATSS) and joint-optimization regression loss (GLDL-Loss) are designed in an alignment manner on the basis of K-L divergence.

Mathematical Details of GLDL

1. When the object in the polar region, its tangent plane is Π_0 , it can be converted into a Gaussian distribution $\mathcal{N}(\mu_0, \Sigma_0)$.

JUNE 18-22, 2023 🎽

 $\boldsymbol{\mu}_0 = [\sin(\phi_0)\cos(\theta_0), \sin(\phi_0)\sin(\theta_0), \cos(\phi_0)]$ $\boldsymbol{\Sigma}_0 = \mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\top},$

$$\mathbf{R} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{\Lambda} = \begin{bmatrix} \frac{w^2}{4} & 0 & 0\\ 0 & \frac{h^2}{4} & 0\\ 0 & 0 & 0 \end{bmatrix}$$

2. When the object in other region, we can establish a new coordinate system based on its tangent plane Π_i .

$$\begin{cases} \mathbf{X}_i = [\sin(\theta_i), -\cos(\theta_i), 0]^\top \\ \mathbf{Y}_i = [\cos(\phi_i)\cos(\theta_i), \cos(\phi_i)\sin(\theta_i), -\sin(\phi_i)]^\top \\ \mathbf{Z}_i = [\sin(\phi_i)\cos(\theta_i), \sin(\phi_i)\sin(\theta_i), \cos(\phi_i)]^\top \end{cases}$$

3. Gaussian distributions $\mathcal{N}(\mu_i, \Sigma_i)$ can be constructed based $\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i$.

 $\boldsymbol{\mu}_i = (\sin(\phi_i)\cos(\theta_i), \sin(\phi_i)\sin(\theta_i), \cos(\phi_i))$

$$\mathbf{\Sigma}_i = \mathbf{R}(\mathbf{T} \mathbf{\Lambda} \mathbf{T}^{ op}) \mathbf{R}^{ op}, \ \mathbf{T} = [\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i]$$

4. GLDL can calculated based on μ_i, Σ_i .

$$D_{kl}(\mathcal{N}_p, \mathcal{N}_g) = \frac{1}{2} (\boldsymbol{\mu}_p - \boldsymbol{\mu}_g)^\top \boldsymbol{\Sigma}_g^{-1} (\boldsymbol{\mu}_p - \boldsymbol{\mu}_g) + \frac{1}{2} tr(\boldsymbol{\Sigma}_g^{-1} \boldsymbol{\Sigma}_p) + \frac{1}{2} \ln \frac{|\boldsymbol{\Sigma}_g|}{|\boldsymbol{\Sigma}_p|} - 1$$

- GLDL has significantly greater **consistency** with SphloU than L1-norm.
- GLDL has significantly greater scale invariance than SphloU.

• Our method is robust to hyperparameters.

Dataset	$\tau = 1$	$\tau = 2$	$\tau = 3$	$\tau = 4$	$\tau = 5$	baseline
360-Indoor	20.3	20.5	20.4	20.0	19.4	17.6
PANDORA	20.1	20.3	20.1	19.9	19.7	17.2

Dataset	c = 1	c = 2	c = 3	c = 4	c = 5	baseline
360-Indoor	21.5	21.8	21.7	21.4	21.2	20.1
PANDORA	20.9	21.3	21.2	21.1	22.8	19.6

• Improvement dose not come from normalized function itself.

Loss	Normalized Function	360-Indoor	PANDORA	
1035	The manzeu Function	\mathbf{AP}_{50}	\mathbf{AP}_{50}	
Smooth L1	w/	13.7	12.9	
	w/o	17.6	17.2	

 GLDL-ATSS and GLDL-Loss can cooperate with each other to improve the detection performance.

Dataset	Backbone	$\mathcal{S}_{ m ss}$	\mathcal{L}_{reg}	\mathbf{AP}_{50}
	R-101	\mathcal{S}_{IoU} (Fixed)	\mathcal{L}_{L1}	17.6
	R-101	\mathcal{S}_{IoU} (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	20.7 (+3.1)
360 Indoor	R-101	$\mathcal{S}_{\text{GLDL}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	22.8 (+5.2)
500-1110001	R-101	\mathcal{S}_{IoU} (ATSS)	\mathcal{L}_{L1}	20.1
	R-101	\mathcal{S}_{IoU} (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	22.3 (+2.2)
	R-101	$\mathcal{S}_{\mathrm{GLDL}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	25.0 (+4.9)
	R-101	\mathcal{S}_{IoU} (Fixed)	\mathcal{L}_{L1}	17.2
	R-101	\mathcal{S}_{IoU} (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	21.4 (+4.2)
	R-101	$\mathcal{S}_{\text{GLDL}}$ (Fixed)	$\mathcal{L}_{ ext{GLDL}}$	22.7 (+5.5)
PANDOKA	R-101	\mathcal{S}_{IoU} (ATSS)	\mathcal{L}_{L1}	19.6
	R-101	$\mathcal{S}_{\mathrm{IoU}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	23.4 (+3.8)
	R-101	$\mathcal{S}_{\text{GLDL}}$ (ATSS)	$\mathcal{L}_{ ext{GLDL}}$	25.2 (+5.6)

• GLDL-ATSS and GLDL-loss improve various detectors on two mainstream datasets.

Method	Backhone	\mathcal{S}_{ss} \mathcal{L}_{reg}		\mathcal{L}_{reg}	360-Indoor			PANDORA			
	Dackoolle	\mathcal{S}_{IoU}	$\mathcal{S}_{ ext{GLDL}}$	\mathcal{L}_{L1}	\mathcal{L}_{GLDL}	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP ₇₅
	R-101	\checkmark		\checkmark		4.7	11.1	2.8	4.2	10.8	2.2
	R-101	\checkmark			\checkmark	7.2(+2.5)	14.2(+4.1)	5.4(+2.4)	7.8(+3.6)	15.6(+4.8)	4.3(+2.1)
Multi-Kernel [26]	R-101		\checkmark	\checkmark		6.8(+2.1)	13.9(+2.8)	4.7(+1.9)	6.2(+2.0)	14.5(+3.7)	3.9(+1.7)
	R-101		\checkmark		\checkmark	9.3(+4.6)	17.2(+6.1)	6.6(+3.8)	10.2(+6.0)	17.6(+6.8)	6.9(+4.4)
	R-101	\checkmark		\checkmark		2.9	7.8	1.4	2.3	7.7	1.5
	R-101	\checkmark			\checkmark	5.6(+2.7)	10.8(+3.0)	4.2(+2.8)	5.9(+3.6)	12.3(+4.6)	4.9(+3.4)
Sphere-SSD [4]	R-101		\checkmark	\checkmark		4.9(+2.0)	10.2(+2.4)	3.7(+2.3)	4.1(+1.8)	9.8(+2.1)	3.2(+1.7)
	R-101		\checkmark		\checkmark	7.8(+4.9)	12.6(+4.8)	5.4(+4.0)	8.0(+5.7)	13.8(+6.1)	6.8(+5.3)
	R-101	\checkmark		\checkmark		5.0	15.3	1.9	4.2	14.7	1.8
Reprojection R-CNN [36]	R-101	\checkmark			\checkmark	7.5(+2.5)	18.2(+2.9)	3.8(+1.9)	7.9(+ 3.7)	18.7(+4.0)	4.5(+2.7)
	R-101		\checkmark	\checkmark		7.1(+ 2.1)	17.8(+2.5)	3.2(+1.3)	6.8(+2.6)	17.4(+2.7)	3.0(+1.2)
	R-101		\checkmark		\checkmark	10.8(+5.8)	22.5(+7.2)	5.3(+3.4)	11.1(+6.9)	22.8(+8.1)	5.8(+4.0)
Sphere-CenterNet [5]	R-101			\checkmark		10.0	24.8	6.0	-	-	-
	R-101				\checkmark	11.2(+1.1)	26.1(+1.3)	7.4(+1.4)	-	-	-
R-CenterNet [27]	R-101			\checkmark		-	-	-	7.3	22.7	2.6
	R-101				\checkmark	-	-	-	8.7(+1.4)	24.3(+1.6)	4.5(+1.9)

• GLDL-ATSS and GLDL-loss help detector to get more precise predicted results.

360-Indoor dataset

 S_{IoU} (Fixed) + L_{L1}

 S_{GLDL} (ATSS) + \mathcal{L}_{GLDL}

 S_{IoU} (Fixed) + L_{L1}

PANDORA dataset

- Paper: Gaussian Label Distribution Learning for Spherical Image Object Detection
- Concat:
 - Hang Xu: <u>hxu@hdu.edu.cn</u>
 - Qiang Zhao: <u>zhaoqiang@ict.ac.cn</u>
 - Feng Dai: fdai@ict.ac.cn
- Home of our Lab: http://iipl.net.cn/index/index.aspx