Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide Variety of Environments

Masakazu Yoshimura, Junji Otsuka, Atsushi Irie, and Takeshi Ohashi (Sony Group Corporation)

WED-PM-158

Quick Summary

Proposed Concept

Achieve recognition in any environments (dark, blurry, HDR, ...) with augmentation

• Usual training pipeline

• Proposed Noise-accounted RAW augmentation

Results

Evaluated with human detection in challenging environment

			mAP@0.5:0.95 [%]		
			black-box	simple ISP	
augmentation		noise	ISP	simplest	parameterized
Color	after	-	45.2	19.3	-
	before (ours)	-	-	40.9	44.4
		w/o prior	-	43.5	47.7
		ours	-	44.6	48.1
Color + Blur	after	-	46.8	20.4	-
	before (ours)	-	-	43.3	43.8
		ours†	-	43.4	47.9
		ours	-	45.3	48.3

†: The noise alignment is only applied to the color jitter augmentation.

Double the accuracy with the same ISP setting

Improved accuracy even with a simple ISP

2

Introduction

Standard RGB (sRGB) images (png, jpg, ...) are heavily preprocessed images

3

SONY

1. To ensure realistic pixel intensity distribution

- Prepare RAW data and apply augmentation before applying an ISP
 - ✓ pixel distribution that can be taken if the environment light intensity is 0.4 times.

- Although several previous works like UPI proposed similar idea for image restoration,
 - 1. We want to emphasize the importance again, especially to image recognition field
 - 2. Differently, we recommend starting from RAW instead of sRGB
 - 3. Differently, we recommend applying not only contrast aug. but also other augmentations like blur aug. before ISP

• sRGB contains less info. (8 bit)

Quantization error with small contrast factor like 0.01

Day (~10,000 lux) to night (~1 lux) conversion needs very small contrast factor

• Difficulty of inverting ISP

SONY

5

2. To ensure realistic pixel noise

- Noise amount is corrected after augmentations
- 1. Start from a well-established noise model (A. Foi et al, TIP2008)

$$x \sim \mathcal{N}\left(\mu_x = g\alpha \bar{u}, \ \sigma_x^2 = g^2 \alpha^2 \bar{u} + g^2 \sigma_d^2 + \sigma_r^2\right)$$

x	pixel value of RAW
и	Photon number hitting a photodiode
g	Analog gain
α	Quantum efficiency
σ_d^2	Circuit noise var. before analog gain
σ_r^2	Circuit noise var. after analog gain

2. Calibrate the hyperparameters of the noise model (α , σ_d^2 , σ_r^2) per image sensor

2. To ensure realistic pixel noise

3. Derive noise-accounted augmentation formulas

Color Jitter Aug.

$$\begin{split} & \bigwedge x_{new} \sim \mathcal{N} \begin{pmatrix} (p_g g) \alpha(p_u \bar{u}), \\ (p_g g)^2 \alpha^2 (p_u \bar{u}) + (p_g g)^2 \sigma_d^2 + \sigma_r^2 \end{pmatrix} \\ & \sim p_u p_g x_{pre} + \\ & \mathcal{N}(0, \ p_u (1 - p_u) p_g^2 g \alpha \mu_x \\ & + (1 - p_u^2) p_g^2 g^2 \sigma_d^2 + (1 - p_u^2 p_g^2) \sigma_r^2 \end{split}$$

Many previous works like Day-to-night (A. Punnappurath, CVPR2022)

$$x_{new} = p_u p_g x_{pre} + \mathcal{N}(0, p_u p_g x_{pre} + p_g^2 g^2 \sigma_d^2 + \sigma_r^2)$$

Disregard prior input noise

If analog gain g was p_g times and (exposure time)×(environment light intensity) was p_u times

Our formula is more accurate and can be applied to any data including noisy input

2. To ensure realistic pixel noise

1. Derive noise-accounted augmentation formulas

Blur Aug.

SONY

$$\sum_{k} x_{new} \sim \mathcal{N}\left(g\alpha \sum_{k} w_k \bar{u_k}, \ g^2 \alpha^2 \sum_{k} w_k \bar{u_k} + g^2 \sigma_d^2 + \sigma_r^2\right)$$
$$\sim \sum_{k} w_k x_{pre} + \mathcal{N}(0, \ g\alpha \sum_{k} (1 - w_k) w_k x_{pre,k}$$
$$+ (1 - \sum_{k} w_k^2)(g^2 \sigma_d^2 + \sigma_r^2))$$

Previous works $x_{new} = \sum_{k} w_k x_{pre}$ No works correct noise amount If more blur $\sum_k w_k$ was exist

Evaluation

SONY

8

Training a detector with images in normal environment

Test with images in challenging (dark, blurry, HDR) environments

		mAP@0.5:0.95 [%]		
		black-box	simple ISP	
augmentation		ISP	simplest	parameterized
after	-	45.2	19.3	-
before (ours)	-	-	40.9	44.4
	w/o prior	-	43.5	47.7
	ours	-	44.6	48.1
after	-	46.8	20.4	-
before (ours)	-	-	43.3	43.8
	ours†	-	43.4	47.9
	ours	-	45.3	48.3
	entation after before (ours) after before (ours)	entation noise after - before v/o prior (ours) ours after - before - before ours† ours	entation noise ISP after - 45.2 before (ours) ours - after - 46.8 ** before ours - before ours - before ours before ours before ours before ours ours before ours ours before ours before ours before ours before ours before ours before ours before ours before ours before before before before before before ours before before before ours	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

†: The noise alignment is only applied to the color jitter augmentation.

More accurate than other noise-dealing method proposed for image restoration

	AP@0.5:0.95 [%]	
method	w/o ISP	w/ ISP
concat [2]	16.5	21.5
aug. + concat [2]	35.0	31.6
our aug. + concat [2]	33.7	40.4
K-Sigma [45]	14.3	27.5
K-Sigma [45] + aug.	25.0	34.1
aug. + K-Sigma [45]	26.6	42.1
our aug. + K-Sigma [45]	26.3	44.0
our aug.	32.8	45.3

Evaluation

Visualization

SONY

9

Conclusion

Conclusion

- We propose a noise-accounted RAW augmentation
 - Augmentation before ISP
 - accurate noise correction considering prior input noise

Future Direction

- We believe you can use Rawgment without any annotation
 - 1. Record RAW (+ corresponding sRGB) data in normal environment
 - 2. Create pseudo labels with existing recognition models
 - 3. Train a new detector with the pseudo label and Rawgment to detect in challenging environments

