

Learning Instance-Level Representation for Large-Scale Multi-Modal Pretraining in E-commerce

Yang Jin, Yongzhi Li, Zehuan Yuan, Yadong Mu

Peking University, ByteDance Inc.

Poster: Wed-PM-269

Our Foundation Model : ECLIP

 $\left\{h_t^l\right\}_{t=1}^T$ Add & Norm Feed-forward Add & Norm Self-Attention Add & Norm . Slot-Attention W_q W_{7} W_n ${h_t^{l-1}}_{t=1}^T$ $\{z_i\}_{i=1}^N$ $\{q_t\}_{t=1}^T$ (b) The *i*-th Decoder Block

Introduction

Given an image-text pair, existing Vision-Language foundation models aims to learn the image-level representations.

CLIP

BLIP

The difference of natural image and product image in E-commerce.

Introduction

We explore the ways to enable vision-language foundation model to obtain instance-level representation in E-commerce.

General Domain

Foreground: horse, people, church

A group of people on horseback next to a church

Foreground: frying pan, coffee machine

Italian semi-automatic

home coffee maker

Motivation

A product usually has multiple image samples from different sources (e.g., merchant, customer comments, attached advertisement videos, etc.)

The property of product images in E-commerce.

Instance Decoder

Input:

Instance Query

$$Q = \{q_t \in \mathcal{R}^D\}_{t=1}^T, q_t = q_t^{\text{prompt}} + q_t^{\text{pos}} + q_t^{\text{type}}.$$

One positive query, T - 1 negative ones
Negative Positive

Image Patch Representation

$$\boldsymbol{Z} = \{ z_i \in \mathcal{R}^D \}_{i=1}^N.$$

Instance Representations

$$\boldsymbol{H} = \{h_t\}_{t=1}^T \qquad \boldsymbol{H}^0$$
 are zero-initialized,

Slot-Attention Layer

Step 1:

Calculate the similarity matrix

$$M = \frac{1}{\sqrt{D}} (ZW_z) \cdot ((Q + H^{l-1})W_q)^{\top},$$
$$M_{ij} = \frac{\exp(M_{ij})}{\sum_{t=1}^T \exp(M_{it})} \cdot M \in \mathcal{R}^{N \times T},$$

Slot-Attention Layer

Step 2:

Perform the soft assignment and Update the instance representation $\Delta h_t^{l-1} = \frac{1}{\sum_{i=1}^N M_{it}} \sum_{i=1}^N M_{it} (W_v z_i).$ $h_t^l = h_t^{l-1} + W_o \Delta h_t^{l-1}.$ Image 28 🚝 🖌 ... 🍋 Patches Instance Queries Negative Positive

Pretraining Proxy Tasks

Image-Text Contrastive Learning :

Pretraining Proxy Tasks

Inter-Product Multi-modal Learning

We use the similarity between $g_I(v_{cls})$ and $g_T(w_{cls})$ to sample the hard negative samples.

$$\mathcal{L}_{inter} = -\sum_{i=1}^{B} \log \frac{\exp(h_{\theta}^{i^{\top}} h_{\xi}^{j} / \tau)}{\exp(h_{\theta}^{i^{\top}} h_{\xi}^{j} / \tau) + \sum_{k \in \mathcal{N}^{-}} \exp(h_{\theta}^{i^{\top}} h_{\xi}^{k} / \tau)},$$

Pretraining Proxy Tasks

Intra-Product Multi-modal Learning

To regularize the Similarity Matrix M

$$\mathcal{L}_{\mathcal{R}} = \sum_{i=1}^{N} M_{i,r} \log(\frac{1}{M_{i,r}}) + \sum_{i=1}^{N} M_{i,r} \log(\frac{1}{M_{i,j}})$$
 For Negative Queries

Pretraining On 100M E-commerce Data

100M various image-text pairs, from 15M different products

(a) Product Detail Page

(b) Customer Comment

(c) Advertisement Video

Living room oil painting style tissue box

Pretraining Data Format

Method	Classification	Image	-to-Text	Text-to-Image		
Method	Acc@1	R@1 R@5		R@1	R@5	
CLIP [21]	37.2	52.6	74.1	58.7	84.0	
FILIP [32]	37.1	52.3	73.8	58.0	83.5	
DeCLIP [15]	37.8	53.1	75.8	58.8	83.9	
ALBEF [13]	38.5	52.9	74.4	58.2	83.3	
BLIP [12]	39.3	53.3	75.6	59.1	84.4	
OursviT-B/16	43.8	53.8	76.0	59.9	84.6	
OursviT-L/16	44.8	58.2	79.6	63.8	87.4	

Zero-shot transfer to classification and image-text retrieval

Experimental Results

Method	Pretraining Dataset	Coarse Product Retrieval		Fine-grained Product Retrieval						
		mAP@1	mAP@5	mAP@10	R@1	R@5	R@10	mAP@1	mAP@5	mAP@10
ViLBERT [17]	0.000	58.6	61.7	60.1	-	-	-	-	-	-
UNITER [2]	M5Product	58.9	62.8	60.9	-	-	2	2	-	-
SCALE [4]		59.8	64.1	62.2	-	-	2	-	-	<u> </u>
CLIP [20]		68.2	73.2	70.7	34.8	54.2	62.9	34.8	40.2	39.9
FILIP [31]		67.8	73.0	70.3	34.6	53.9	62.2	34.6	40.1	39.7
DeCLIP [14]		68.5	73.4	70.8	35.3	56.4	65.5	35.3	41.2	40.8
ALBEF [12]	ECLIP 100M	68.7	73.6	71.2	35.1	56.1	65.2	35.1	40.7	40.4
BLIP [11]		69.1	74.1	71.6	35.6	56.8	66.0	35.6	41.6	41.3
OursviT-B/16		69.6	74.9	72.5	44.3	63.4	71.1	43.8	48.6	48.2
Ours _{ViT-L/16}		70.2	75.3	72.9	45.0	64.2	72.1	45.0	50.0	49.5

Zero-shot transfer to Product Retrieval

Method	Visual Grounding					
Method	Acc@0.5	Acc@0.7				
CLIP [20]	80.9	75.2				
FILIP [31]	81.3	75.6				
DeCLIP [14]	81.0	75.3				
ALBEF [12]	80.9	74.7				
BLIP [11]	81.1	75.1				
OursviT-B/16	91.2	89.6				

Zero-shot transfer to Visual Grounding

Visualization Results

Special space schoolbag for primary school students

Fully automatic multi-functional mixing, baking and kneading

gold necklace female collarbone chain gold necklace

ECLIP on Zero-Shot Grounding

The T-SNE visualization of learned representation

Thanks!