Learning Instance-Level Representation for LargeScale Multi-Modal Pretraining in E-commerce

Yang Jin, Yongzhi Li, Zehuan Yuan, Yadong Mu

Peking University, ByteDance Inc.
Poster: Wed-PM-269

Our Foundation Model : ECLIP

Introduction

Given an image-text pair, existing Vision-Language foundation models aims to learn the image-level representations.

Introduction

We explore the ways to enable vision-language foundation model to obtain instance-level representation in E-commerce.

General Domain

Foreground: horse, people, church

A group of people on horseback next to a church

E-commerce Domain

Foreground: frying pan, coffee machine

Stainless steel frying pan

Italian semi-automatic home coffee maker

The difference of natural image and product image in E-commerce.

Motivation

A product usually has multiple image samples from different sources (e.g., merchant, customer comments, attached advertisement videos, etc.)

PROYA ruby face cream for ladies
The property of product images in E-commerce.

Instance Decoder

Input:

Instance Query

$$
\boldsymbol{Q}=\left\{q_{t} \in \mathcal{R}^{D}\right\}_{t=1}^{T}, q_{t}=q_{t}^{\mathrm{prompt}}+q_{t}^{\mathrm{pos}}+q_{t}^{\text {type }} .
$$

One positive query, T-1 negative ones

Positive
Image Patch Representation

$$
\boldsymbol{Z}=\left\{z_{i} \in \mathcal{R}^{D}\right\}_{i=1}^{N} .
$$

Instance Representations

$$
\boldsymbol{H}=\left\{h_{t}\right\}_{t=1}^{T} \quad \boldsymbol{H}^{0} \text { are zero-initialized, }
$$

Slot-Attention Layer

Step 1:

Calculate the similarity matrix

$$
\begin{aligned}
& \qquad M=\frac{1}{\sqrt{D}}\left(Z W_{z}\right) \cdot\left(\left(Q+H^{l-1}\right) W_{q}\right)^{\top} \\
& \qquad M_{i j}=\frac{\exp \left(M_{i j}\right)}{\sum_{t=1}^{T} \exp \left(M_{i t}\right)} \cdot M \in \mathcal{R}^{N \times T}, \\
& \begin{array}{l}
\text { Image } \\
\text { Patches }
\end{array} \\
& \begin{array}{l}
\text { Instance } \\
\text { Queries }
\end{array}
\end{aligned}
$$

Slot-Attention Layer

Step 2:

Perform the soft assignment and Update the instance representation

$$
\begin{gathered}
\Delta h_{t}^{l-1}=\frac{1}{\sum_{i=1}^{N} M_{i t}} \sum_{i=1}^{N} M_{i t}\left(W_{v} z_{i}\right) . \\
h_{t}^{l}=h_{t}^{l-1}+W_{o} \Delta h_{t}^{l-1} .
\end{gathered}
$$

Pretraining Proxy Tasks

Image-Text Contrastive Learning :

$$
s\left(x^{I}, x^{T}\right)=g_{I}\left(v_{c l s}\right)^{\top} g_{T}\left(w_{c l s}\right)
$$

$$
\mathcal{L}_{i 2 t}=-\sum_{i=1}^{B} \log \frac{\exp \left(s\left(x_{i}^{I}, x_{i}^{T}\right) / \tau\right)}{\sum_{j=1}^{B} \exp \left(s\left(x_{i}^{I}, x_{j}^{T}\right) / \tau\right)}
$$

$$
\mathcal{L}_{t 2 i}=-\sum_{i=1}^{B} \log \frac{\exp \left(s\left(x_{i}^{T}, x_{i}^{I}\right) / \tau\right)}{\sum_{j=1}^{B} \exp \left(s\left(x_{i}^{T}, x_{j}^{I}\right) / \tau\right)}
$$

Pretraining Proxy Tasks

Inter-Product Multi-modal Learning

We use the similarity between $g_{I}\left(v_{c l s}\right)$ and $g_{T}\left(w_{c l s}\right)$ to sample the hard negative samples.

$$
\mathcal{L}_{\text {inter }}=-\sum_{i=1}^{B} \log \frac{\exp \left(h_{\theta}^{i}{ }^{\top} h_{\xi}^{j} / \tau\right)}{\exp \left(h_{\theta}^{i}{ }^{\top} h_{\xi}^{j} / \tau\right)+\sum_{k \in \mathcal{N}^{-}} \exp \left(h_{\theta}^{i}{ }^{\top} h_{\xi}^{k} / \tau\right)},
$$

Pretraining Proxy Tasks

Intra-Product Multi-modal Learning

To regularize the Similarity Matrix M

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{R}}=\begin{array}{|l}
\sum_{i=1}^{N} M_{i, r} \log \left(\frac{1}{M_{i, r}}\right)+ \\
\\
\sum_{j=1, j \neq r}^{T}\left(\log N-\sum_{i=1}^{N} M_{i, j} \log \left(\frac{1}{M_{i, j}}\right)\right)
\end{array} \longrightarrow \text { For Positive Query } \\
&
\end{aligned}
$$

Pretraining On 100M E-commerce Data

100M various image-text pairs, from 15M different products
(a) Product Detail Page

(b) Customer Comment

(c) Advertisement Video

Living room oil painting style tissue box

Method	Classification			Image-to-Text			Text-to-Image	
	Acc@1		R@1	R@5		R@	R@5	
CLIP [21]	37.2		52.6	74.1		58.7	84.0	
FILIP [32]	37.1		52.3	73.8	58.0	83.5		
DeCLIP [15]	37.8		53.1	75.8	58.8	83.9		
ALBEF [13]	38.5		52.9	74.4	58.2	83.3		
BLIP [12]	39.3		53.3	75.6	59.1	84.4		
Ours $_{\text {ViT-B/16 }}$	43.8		53.8	76.0	59.9	84.6		
Ours $_{\text {viT-L/16 }}$	$\mathbf{4 4 . 8}$		$\mathbf{5 8 . 2}$	$\mathbf{7 9 . 6}$	$\mathbf{6 3 . 8}$	$\mathbf{8 7 . 4}$		

Zero-shot transfer to classification and image-text retrieval

Experimental Results

Method	Pretraining Dataset	Coarse Product Retrieval			Fine-grained Product Retrieval					
		mAP@1	mAP@5	mAP@10	R@1	R@5	R@10	mAP@1	mAP@5	mAP@10
ViLBERT [17]		58.6	61.7	60.1	-	-	-	-	-	-
UNITER [2]	M5Product	58.9	62.8	60.9	-	-	-	-	-	-
SCALE [4]		59.8	64.1	62.2	-	-	-	-	-	-
CLIP [20]		68.2	73.2	70.7	34.8	54.2	62.9	34.8	40.2	39.9
FILIP [31]		67.8	73.0	70.3	34.6	53.9	62.2	34.6	40.1	39.7
DeCLIP [14]		68.5	73.4	70.8	35.3	56.4	65.5	35.3	41.2	40.8
ALBEF [12]	ECLIP 100M	68.7	73.6	71.2	35.1	56.1	65.2	35.1	40.7	40.4
BLIP [11]		69.1	74.1	71.6	35.6	56.8	66.0	35.6	41.6	41.3
Ours vit-B/16 $^{\text {a }}$		69.6	74.9	72.5	44.3	63.4	71.1	43.8	48.6	48.2
Ours vith/l/		70.2	75.3	72.9	45.0	64.2	72.1	45.0	50.0	49.5

Zero-shot transfer to Product Retrieval

Method	Visual Grounding	
	Acc@0.5	Acc@0.7
CLIP [20]	80.9	75.2
FILIP [31]	81.3	75.6
DeCLIP [14]	81.0	75.3
ALBEF [12]	80.9	74.7
BLIP [11]	81.1	75.1
Ours $_{\text {viT-B/16 }}$	$\mathbf{9 1 . 2}$	$\mathbf{8 9 . 6}$

Visualization Results

ECLIP on Zero-Shot Grounding

The T-SNE visualization of learned representation

Thanks!

