

FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation

GRADUATION REPORT TEMPLE FOR ZHEJIANG UNIVERSITY

Jiaxu Miao, Zongxin Yang, Leilei Fan, Yi Yang

ReLER, CCAI, Zhejiang University

Al models require large amounts of data, collected from **a variety of sources**.

A risk of data privacy leakage will be compromised if AI models use sensitive or personal data directly.

AI & Data Privacy – Federated Learning

Federated Learning - training across multiple decentralized edge devices or servers

- holding local data, without exchanging them

Federated learning is needed in semantic segmentation

- > Pixel-level annotations are hard to acquire Data Insufficient
- Collaborative learning and privacy-preserving

Pixel-level annotations are hard to acquire

Collaborative learning and privacy-preserving

Problems in semantic segmentation federated learning - optimization direction diverging

- Foreground-background inconsistency: "cat" is annotated in Client 3 but not in Client 2.
- non-IID distribution: makes the local optimization direction diverging to the global optimum.

Problems in semantic segmentation federated learning - optimization direction diverging

- Foreground-background inconsistency: "cat" is annotated in Client 3 but not in Client 2.
- **non-IID distribution:** makes the local optimization direction diverging to the global optimum.

Method: FedSeg – Use two local losses to correct local drift in local updates

- *L_{backce}* : modified CE loss correct the local optimization direction
- *L*_{con} : local-to-global contrastive learning loss local model close to global model

Method: FedSeg – Use two local losses to correct local drift in local updates

• Proof of *L_{backce}* : corrects local gradients to simulate the centralized learning

$$\mathcal{L}_{ce}(x,y) = -\frac{1}{|\mathcal{P}|} \sum_{j \in \mathcal{P}} \log q_x(j,y_j)$$

$$\downarrow$$

$$\frac{\partial \mathcal{L}_{ce}}{\partial z_c^j} = \begin{cases} p_c^j - 1 < 0 & \text{if } y_j = c \\ p_c^j > 0 & \text{if } y_j \neq c, \end{cases}$$

Standard CE Loss: direction away from the global optimum

$$\begin{aligned} \mathcal{L}_{backce}^{i}(x,y) &= -\frac{1}{|\mathcal{P}|} \sum_{j \in \mathcal{P}} \log \hat{q}_{x}(j,y_{j}) \\ \hat{q}_{x}(j,c) &= \begin{cases} q_{x}(j,c) & \text{if } c \in \mathcal{C}_{i} \\ \sum_{k \in \mathcal{C} \setminus \mathcal{C}_{i}}^{K} q_{x}(j,k) & \text{if } c \notin \mathcal{C}_{i}. \end{cases} \\ \frac{\partial \mathcal{L}_{backce}}{\partial z_{c}} &= -\frac{e^{z_{c}}}{\sum_{k=1}^{K} e^{z_{k}}} \cdot \frac{e^{z_{l}}}{\sum_{k \neq l}^{K} e^{z_{k}}} \\ &= -p_{c} \cdot \frac{e^{z_{l}}}{\sum_{k \neq l}^{K} e^{z_{k}}} \approx -p_{c} \cdot p_{l}. \end{aligned}$$

BackCE Loss: Similar to the centralized learning

FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation. In CVPR2023.

Experiments: Ablation study and comparisons with state-of-the-art methods

	Cityscapes				CamVID				VOC			
Method	non-IID ₁		non-IID ₂		non-IID ₁		non-IID ₂					
	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc
FedAvg [31]	10.40	31.90	28.60	73.76	19.06	51.71	32.12	69.55	8.56	34.44	6.91	59.25
$FedAvg+\mathcal{L}_{backce}$	45.08	87.98	47.67	89.48	58.38	88.51	62.13	90.00	32.28	54.83	8.31	61.60
$FedAvg+\mathcal{L}_{backce}+\mathcal{L}_{con}$	50.24	90.06	52.18	91.38	63.50	90.68	64.67	91.25	32.20	54.50	8.64	62.10
(b) Comparison with other FL methods(%). *All of them use \mathcal{L}_{backce} as baseline.												
	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc	mIoU	Acc
FedAvg [*] [31]	45.08	87.98	47.67	89.48	58.38	88.51	62.13	90.00	32.28	54.83	8.31	61.60
FedProx [*] [22]	44.85	87.50	47.17	89.81	58.29	87.28	62.04	90.61	32.17	55.19	8.25	61.01
FedDyn [*] [1]	45.19	88.26	47.69	90.38	59.44	89.32	62.18	90.20	32.20	54.59	-	-
MOON* [26]	45.84	88.58	47.87	89.59	58.90	87.96	62.77	90.98	30.92	53.91	-	-
FedSeg	50.24	90.06	52.18	91.38	63.50	90.68	64.67	91.25	32.20	54.50	8.64	62.10

(a) Results of FedSeg(%) to show the effectiveness of \mathcal{L}_{backce} and \mathcal{L}_{con} .

FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation. In CVPR2023.

Experiments: Analysis of FedSeg

• The speed of mIoU improvement of FedSeg is faster - communication efficiency

Experiments: Visualization of FedSeg

FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation. In CVPR2023.