L-Colns: Language-based Colorization with Instance Awareness

Zheng Chang ${ }^{1 \#}$ Shuchen Weng ${ }^{2,3 \#}$ Peixuan Zhang ${ }^{1}$ Yu Li ${ }^{4}$ Si Li* ${ }^{*}$ Boxin Shi ${ }^{2,3}$

[^0]Outline

- Introduction
- Background
- Problem and Improvement
- Method
- Pipeline
- Luminance Augmentation
- Aggregating Similar Patches
- Result
- Comparison with Language-based Colorization
- Comparison with Automatic Colorization
- Ablation
- Application

Background

Example-based

Language-based

Problem and Improvement

Outline

- Introduction
- Background
- Problem and Improvement

Method

- Pipeline
- Luminance Augmentation
- Aggregating Similar Patches
- Result
- Comparison with Language-based Colorization
- Comparison with Automatic Colorization
- Ablation
- Application

Pipeline

Training Loss:

$$
L_{\text {total }}=\alpha L_{\delta}+\beta L_{\mathrm{ctr}}, \text { where } L_{\delta}=\frac{1}{N_{\mathrm{p}}} \sum \frac{1}{2}\left(\hat{I}_{\mathrm{ab}}-I_{\mathrm{ab}}\right)^{2} \mathbb{1}_{\left\{\left|\hat{I}_{\mathrm{ab}}-I_{\mathrm{ab}}\right|<\delta\right\}}+\frac{1}{N_{\mathrm{p}}} \sum \delta\left(\left|\hat{I}_{\mathrm{ab}}-I_{\mathrm{ab}}\right|-\frac{1}{2} \delta\right) \mathbb{1}_{\left\{\left|\hat{I}_{\mathrm{ab}}-I_{\mathrm{ab}}\right| \geq \delta\right\}}
$$

Luminance Augmentation

Luminance augmentation consists of two steps:
I. Randomly rotate the hue as:

$$
I_{\mathrm{r}}=\left[\mathrm{Frotate}\left(I_{\mathrm{O}}^{\mathrm{h}}, \lambda\right), I_{\mathrm{O}}^{\mathrm{S}}, I_{\mathrm{O}}^{\mathrm{V}}\right]
$$

Adjust the global luminance as:

$$
\hat{I}_{\mathrm{g}}=A I_{\mathrm{g}}^{\mathrm{F}_{\mathrm{inv}}(\gamma)}
$$

Augmented grayscale 2

Augmented grayscale 3

Augmented grayscale 4

Aggregating Similar Patches

I. Merging image tokens corresponding to the same group to concrete the instance representation:

$$
\bar{Z}_{\mathrm{grp}, i}^{L+1}=Z_{\mathrm{grp}, i}^{L+1}+\frac{\sum_{j=1}^{N_{\mathrm{I}}} \hat{A}_{i, j} W_{\mathrm{v}} Z_{\mathrm{img}, j}^{L+1}}{\sum_{j=1}^{N_{\mathrm{I}}} \hat{A}_{i, j}}
$$

II. Using the counter-color loss to optimize the grouping error:

$$
\begin{aligned}
L_{\mathrm{ctr}}= & -\log \left(\mathrm{F}_{\operatorname{sim}}\left(R_{\text {lag }}, R_{\operatorname{grp}}\right)\left(1-\mathrm{F}_{\operatorname{sim}}\left(R_{\text {lag }}^{\prime}, R_{\operatorname{grp}}\right)\right)\right) \\
& -\log \left(\mathrm{F}_{\text {sim }}\left(R_{\text {lag }}^{\prime}, R_{\text {grp }}^{\prime}\right)\left(1-\mathrm{F}_{\text {sim }}\left(R_{\text {lag }}, R_{\text {grp }}^{\prime}\right)\right)\right)
\end{aligned}
$$

The left bucket is purple, the right bucket is red.

The left bucket is yellow, the right bucket is blue.

Outline

- Introduction
- Background
- Problem and Improvement
- Method
- Pipeline
- Luminance Augmentation
- Aggregating Similar Patches
- Result
- Comparison with Language-based Colorization
- Comparison with Automatic Colorization
- Ablation
- Application

Comparison with Language-based Colorization

Comparison with Automatic Colorizatior

Ablation

Application

1909. "Central station."

1940. "Three boys from Los Angeles who are looking for work in an airplane factory."

There is a red house under the blue sky surrounded by green grasses.

The man in the middle is wearing a gold coat.

1923. " Jewett touring car on mountain road."

The two boys on the left are wearing green coats.

A red car stopped on the dirt road.

The boy in the middle wears a coat, and the men on both sides wear blue coats.

[^0]: ${ }^{1}$ School of Artificial Intelligence, Beijing University of Posts and Telecommunications ${ }^{2}$ National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University ${ }^{3}$ National Engineering Research Center of Visual Technology, School of Computer Science, Peking University ${ }^{4}$ International Digital Economy Academy

