

電 腦 科 學 系 Department of Computer Science

Optimal Transport Minimization: Crowd Localization on Density Maps for Semi-Supervised Counting

Wei Lin, and Antoni B. Chan

Department of Computer Science, City University of Hong Kong elonlin24@gmail.com, abchan@cityu.edu.hk

Saturday, May 27, 2023

Motivation

Most crowd counting methods pay attention on density map prediction, few consider how to perform localization on it.

- Optimal Transport Minimization (OT-M) algorithm is proposed to estimate the locations of objects from density maps;
- OT-M is applied to produce *hard pseudo-labels* for semi-supervised counting, which conforms with schemes in other semi-supervised tasks.
- A Confidence-weighted Generalized Loss (C-GL) is proposed to reduce the influence of inaccurate pseudo-labels.

VISAL: Video, Image, and Sound Analysis Lab ²

Optimal Transport Minimization

Objective: estimate a hard label from a soft density map by minimizing the *entropic optimal transport cost* (Sinkhorn distance) between them.

$$\hat{\mathcal{B}} = \operatorname*{arg\,min}_{\mathcal{B} = \{ \boldsymbol{y}_j \}_{j=1}^m} \mathcal{L}^{\varepsilon}(\mathcal{A}, \mathcal{B})$$

$$\mathcal{L}^{\varepsilon}(\mathcal{A}, \mathcal{B}) = \min_{\mathbf{P} \in \mathbf{U}(\boldsymbol{a}, \boldsymbol{b})} \langle \mathbf{C}, \mathbf{P} \rangle - \varepsilon \mathcal{H}(\mathbf{P}),$$
$$= \sum_{i,j} C_{ij} P_{ij} + \varepsilon \sum_{i,j} P_{ij} \log(P_{ij})$$
$$C(\boldsymbol{x}_i, \boldsymbol{y}_j) = \|\boldsymbol{x}_i - \boldsymbol{y}_j\|^2$$

OT-M algorithm follows an *alternating scheme* that estimates the optimal transport plan from the current point map (the OT-step), and updates the point map by minimizing their transport cost (the M-step).

Optimal Transport Step (OT-Step): the optimal transport plan P^(k) is computed while holding the cost matrix fixed:

$$\mathbf{P}^{(k)} = \operatorname*{argmin}_{\mathbf{P} \in \mathbf{U}(\boldsymbol{a}, \boldsymbol{b})} \langle \mathbf{C}(\mathcal{B}^{(k-1)}), \mathbf{P} \rangle - \varepsilon \mathcal{H}(\mathbf{P})$$

► Minimization-Step (M-Step): the optimal cost matrix, parametrized by the points $\mathcal{B} = \{y_j\}_{j=1}^m$ is computed while holding the transport plan fixed: $\mathcal{B}^{(k)} = \underset{\mathcal{B} = \{y_i\}_{i=1}^m}{\operatorname{argmin}} \langle \mathbf{C}(\mathcal{B}), \mathbf{P}^{(k)} \rangle - \varepsilon \mathcal{H}(\mathbf{P}^{(k)})$

Optimal Transport Minimization

 $\mathbf{OT-Step}$ $\mathbf{P}^{(k)} = \underset{\mathbf{P} \in \mathbf{U}(\boldsymbol{a}, \boldsymbol{b})}{\operatorname{argmin}} \langle \mathbf{C}(\mathcal{B}^{(k-1)}), \mathbf{P} \rangle - \varepsilon \mathcal{H}(\mathbf{P})$

The solution of optimal transport can be formulated as:

$$\mathbf{P} = \operatorname{diag}(\mathbf{u})\mathbf{K}\operatorname{diag}(\mathbf{v}), \ \mathbf{K} = \exp(-\mathbf{C}/\varepsilon)$$

 Sinkhorn algorithm[1] repeats the following iterations to find **u** and **v** until convergence:

$$\mathbf{u}^{(l+1)} = rac{oldsymbol{a}}{\mathbf{K}\mathbf{v}^{(l)}}, \quad \mathbf{v}^{(l+1)} = rac{oldsymbol{b}}{\mathbf{K}^{ op}\mathbf{u}^{(l+1)}}$$

 $\begin{aligned} \mathbf{M}\text{-}\mathbf{Step}\\ \mathcal{B}^{(k)} = \underset{\mathcal{B} = \{ \boldsymbol{y}_j \}_{j=1}^m}{\operatorname{argmin}} \langle \mathbf{C}(\mathcal{B}), \mathbf{P}^{(k)} \rangle - \varepsilon \mathcal{H}(\mathbf{P}^{(\mathbf{k})}) \end{aligned}$

> Plugging in the cost function $(\|\cdot\|^2)$, each y_i can be optimized independently:

$$m{y}_{j}^{(k)} = rgmin_{m{y}_{j}} \sum_{i=1}^{n} P_{ij}^{(k)} \|m{x}_{i} - m{y}_{j}\|^{2}$$

Letting its derivative equal to zero:

$$\frac{\partial}{\partial \boldsymbol{y}_j} \sum_{i=1}^n P_{ij}^{(k)} \|\boldsymbol{x}_i - \boldsymbol{y}_j\|^2 = 0 \implies \boldsymbol{y}_j^{(k)} = \frac{\sum_{i=1}^n P_{ij}^{(k)} \boldsymbol{x}_i}{\sum_{i=1}^n P_{ij}^{(k)}}$$

[1] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. *Foundations and Trends in Machine Learning*, 11(5-6):355–607, 2019.

V

Optimal Transport Minimization

OT-step (1)

M-step (1)

OT-step (2)

M-step (2)

OT-M for Semi-Supervised Counting

- Labeled images: A student net is trained with fullysupervised learning on the GT point maps.
- Unlabeled images: A teacher net is used to generate a soft pseudo-label (density map) for perturbed input, and OT-M is applied to produce a hard pseudo-label (point map).
- Mean-teacher: An exponential moving average (EMA) is used to update the parameters in the teacher net.
- C-GL: Confidence-weighted generalized loss is used to reduce the effect of inconsistent (noisy) pseudo-labels.

OT-M for Semi-Supervised Counting

Generalized Loss w/ Gating

$$L_{gl}^{\varepsilon,\tau} = \mathbf{a}^{\top} \mathbf{f}^* + \mathbf{b}^{\top} \mathbf{g}^* - \varepsilon \mathcal{H}(\widehat{\mathbf{P}}) + \tau_2 \|\widehat{\mathbf{P}} \mathbf{1}_m - \mathbf{a}\|_2^2 + \tau_1 \|\widehat{\mathbf{P}}^{\top} \mathbf{1}_n - \mathbf{b}\|_2$$

$$\tau_1 = \begin{cases} 0, & m_{\mathbf{a}} < m_{\mathbf{b}} < m_{\widehat{\mathbf{p}}}, \\ 0, & m_{\widehat{\mathbf{p}}} < m_{\mathbf{b}} < m_{\mathbf{a}}, \\ \tau, & \text{otherwise.} \end{cases}, \quad \tau_2 = \begin{cases} 0, & m_{\mathbf{b}} < m_{\mathbf{a}} < m_{\widehat{\mathbf{p}}}, \\ 0, & m_{\widehat{\mathbf{p}}} < m_{\mathbf{a}} < m_{\mathbf{b}}, \\ \tau, & \text{otherwise.} \end{cases}$$

- ▷ (f^{*}, g^{*}) and P̂ are the gradients of (a, b) and the transport plan while applying Sinkhorn algorithm to KL-UOT.
- (τ₁,τ₂) is used to mask harmful case caused by the bias of Sinkhorn algorithm.

OT-M for Semi-Supervised Counting

Confidence-weighted Generalized Loss

Confidence is computed by measuring the consistency of $\hat{\mathbf{P}}$ and \mathbf{b} .

$$\mathbf{w}_1 = \exp\left[-\gamma \left(\operatorname{diag}(\mathbf{b})^{-1} |\widehat{\mathbf{P}}^\top \mathbf{1}_n - \mathbf{b}|\right)\right]$$
$$\mathbf{w}_2 = \operatorname{diag}(\widehat{\mathbf{P}}\mathbf{1}_m)^{-1}\widehat{\mathbf{P}}\mathbf{w}_1$$

$$L_{c-gl}^{\varepsilon,\tau,\gamma} = \mathbf{a}^{\top} \mathbf{W}_{2} \mathbf{f}^{*} + \mathbf{b}^{\top} \mathbf{W}_{1} \mathbf{g}^{*} - \varepsilon \mathcal{H}(\widehat{\mathbf{P}}) + \tau_{2} \| \mathbf{W}_{2}(\widehat{\mathbf{P}} \mathbf{1}_{m} - \mathbf{a}) \|_{2}^{2} + \tau_{1} \| \mathbf{W}_{1}(\widehat{\mathbf{P}}^{\top} \mathbf{1}_{n} - \mathbf{b}) \|_{1}$$

VISAL: Video, Image, and Sound Analysis Lab

9

Experiments on Localization

Density Map	Localization	Precision	Recall	F-measure
ground truth	LM [58]	0.892	0.736	0.807
density men	GMM [14]	0.842	0.838	0.840
density map	OT-M (ours)	0.914	0.910	0.912
CI [59]	LM [58]	0.782	0.748	0.765
CL [58] cvpr'21	GMM [14]	0.750	0.728	0.739
	OT-M (ours)	0.804	0.783	0.793
MAN [27] cvpr'22	LM [58]	0.624	0.483	0.544
	GMM [14]	0.749	0.732	0.736
	OT-M (ours)	0.772	0.755	0.760
Chfl [47]	LM [58]	0.812	0.571	0.671
CIIIL [47]	GMM [14]	0.755	0.740	0.747
cvpr'22	OT-M (ours)	0.780	0.765	0.772

Method Prec. Rec. F-meas. Faster RCNN [42] 0.958 0.035 0.068 box cvpr'15 RAZNet [28] 0.666 0.543 0.599 cvpr'19 density GL+LM [58] 0.800 0.660 0.562 cvpr'21 map GL+OT-M(ours) 0.710 0.658 0.683 0.712 P2PNet [54] iccv'21 0.729 0.695 point 0.694 0.685 CLTR [23] 0.676 eccv'22

LM: Local Maximum GMM: Gaussian Mixture Model

VISAL: Video, Image, and Sound Analysis Lab

10

Experiments on Semi-Supervised Counting

Label	Mathada	S	ST-A		ST-B		UCF-QNRF		JHU++	
Percentage	Methods	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	
5%	DAC [26]	92.9±3.4	148.6 ± 10.3	$13.4{\pm}2.2$	$24.6{\pm}6.7$	122.7±7.8	$218.9{\pm}14.0$	81.2±2.4	313.7±12.2	
	OT-M (ours)	86.0±2.2	132.7±3.3	$12.8{\pm}1.4$	$22.0{\pm}4.5$	120.1±7.3	208.9±11.7	80.9±3.1	303.1±9.5	
10%	DAC [26]	84.8 ± 4.5	140.9 ± 11.3	11.1 ± 0.5	$18.9 {\pm} 1.9$	110.5 ± 5.9	$196.0{\pm}16.3$	$76.0{\pm}2.0$	293.8±10.4	
	OT-M (ours)	81.6±2.6	127.1±3.8	$10.9{\pm}0.5$	$18.1{\pm}1.4$	107.9±4.1	$180.6{\pm}7.8$	75.5±1.6	287.9±11.1	
40%	DAC [26]	$71.6{\pm}2.0$	$120.8 {\pm} 5.6$	9.0±0.3	$14.6 {\pm} 0.5$	91.8±4.7	$161.4{\pm}12.4$	64.1±3.0	270.6 ± 9.3	
	OT-M (ours)	$70.0{\pm}2.2$	113.0±6.9	$9.0{\pm}0.4$	$14.2{\pm}0.7$	93.4±5.4	157.5±7.8	66.5 ± 3.1	$\textbf{268.2}{\pm}\textbf{9.5}$	

Label	Mathada	ST-A	ST-B	UCF-QNRF	JHU++
Pct.	wiethous	MAE MSE	MAE MSE	MAE MSE	MAE MSE
	MT [55]	104.7 156.9	19.3 33.2	172.4 284.9	101.5 363.5
	L2R [29]	103.0 155.4	20.3 27.6	160.1 272.3	101.4 338.8
5%	GP [49]	102.0 172.0	15.7 27.9	160.0 275.0	98.9 355.7
	DAC [26]	85.2 135.0	12.5 22.1	123.5 207.3	83.9 308.8
	OT-M (ours)	83.7 133.3	12.6 21.5	118.4 195.4	82.7 304.5
	MT [55]	94.5 115.5	15.6 24.5	145.5 250.3	90.2 319.3
	L2R [29]	90.3 115.5	15.6 24.4	148.9 249.8	87.5 315.3
10%	IRAST [31]	86.9 148.9	14.7 22.9	135.6 233.4	86.7 303.4
	DAC [26]	82.5 123.2	10.9 19.1	115.1 193.5	74.0 297.1
	OT-M (ours)	80.1 118.5	10.8 18.2	113.1 186.7	73.0 280.6
	MT [55]	88.2 151.1	15.9 25.7	147.2 249.6	121.5 388.9
40%	L2R [29]	86.5 148.2	16.8 25.1	145.1 256.1	123.6 376.1
	SUA [38]	68.5 121.9	14.1 20.6	130.3 226.3	80.7 290.8
	DAC [26]	71.1 119.7	8.1 13.6	96.8 168.2	66.3 276.6
	OT-M (ours)	70.7 114.5	8.1 13.1	100.6 167.6	72.1 272.0

Method	MAE	MSE
Label only	$138.52{\pm}10.65$	242.26 ± 16.62
LM [58]	$148.53 {\pm} 9.53$	270.25 ± 23.67
GMM [14]	126.67 ± 7.41	217.00 ± 16.17
OT-M (ours)	120.13 ± 7.34	208.87±11.65

VISAL: Video, Image, and Sound Analysis Lab ¹¹

Ablation Study & Limitation

Data	gate	confidence	MAE	MSE
			145.59	257.31
label only	\checkmark		144.48	255.33
	\checkmark	\checkmark	138.52	242.26
Data	loss for unlabeled data		MAE	MSE
	L2 loss		137.17	239.52
label unlabel	L2	w/ confidence	135.88	233.19
laber+uillaber		GL	125.32	214.96
	GL w/	confidence (C-GL)	120.13	208.87

gate	confidence	MAE	MSE
		127.69 ± 4.52	216.50 ± 11.45
	\checkmark	123.85 ± 5.92	$212.23{\pm}12.02$
\checkmark		125.32 ± 7.62	$214.96{\pm}12.57$
\checkmark	\checkmark	120.13±7.34	$208.87{\pm}11.65$

OT-M algorithm is limited by its efficiency.

- > the total runtime for an image of 384×576 is 0.080s:
 - density map estimation :0.013s
 - OT-M :0.067s
- input images are cropped into 512 × 512 in semisupervised counting. Average training time is 0.34s per sample.

Conclusion

- Optimal Transport Minimization algorithm, a parameter-free method for crowd localization on density map. OT-M alternates between two steps:
 - OT-step: the transport plan between the current point map and the input density map is estimated;
 - M-step: the point map is updated using the transport plan computed in the OT-step.
- OT-M is applied to semi-supervised counting via a teacher-student framework.
- A confidence-weighted generalized loss (C-GL) is proposed to reduce confirmation bias introduced by noisy predictions for unlabeled data.

電 腦 科 學 系 Department of Computer Science

Thanks

Wei Lin, and Antoni B. Chan

Department of Computer Science, City University of Hong Kong elonlin24@gmail.com, abchan@cityu.edu.hk

Saturday, May 27, 2023