

CXTRACK: IMPROVING 3D POINT CLOUD TRACKING WITH CONTEXTUAL INFORMATION

TIAN-XING XU¹, YUAN-CHEN GUO¹, YU-KUN LAI² AND SONG-HAI ZHANG¹

¹TSINGHUA UNIVERSITY, ²CARDIFF UNIVERSITY

PAPER ID: 3021

TAG:TUE-AM-103

JUNE 20, 2023

3D SINGLE OBJECT TRACKING

Timeline

CHALLENGE

Appearance variation

Distractor

Contextual information across frames is crucial for single object tracking!

IMPROVING SOT WITH CONTEXTUAL INFORMATION

MORE ACCURATE LOCALIZATION

TABLE OF CONTENT

- Problem Definition
- CXTrack
- Experimental Results
- Limitations & Future work

PROBLEM DEFINITION

 $F(P_{t-1}, B_{t-1}, P_t) \rightarrow B_t$

Previous Paradigm

- $F(T_{t-1}, P_t) \rightarrow (\Delta x, \Delta y, \Delta z, \Delta \theta)$
 - B_t and P_t are the bounding box and point cloud at time t, respectively
 - $\Delta x, \Delta y, \Delta z, \Delta \theta$ are the offset vectors between B_{t-1} and B_t
 - T_{t-1} is the template point cloud of the target cropped from P_{t-1} using B_{t-1}

Ours

- $F(P_{t-1}, M_{t-1}, P_t) \rightarrow (\Delta x, \Delta y, \Delta z, \Delta \theta)$
 - B_t and P_t are the bounding box and point cloud at time t, respectively
 - $\Delta x, \Delta y, \Delta z, \Delta \theta$ are the offset vectors between B_{t-1} and B_t
 - B_{t-1} is encoded into the point-wise mask M_{t-1} to indicate the tracking target

CXTRACK

Embed local geometry into point features

Enhance features with contextual information & Propagate target cues to the current frame Localization

TARGET-CENTRIC TRANSFORMER

Gated

X-RPN

- Local Attention : each point should only interact with points belonging to the same object
 $N(p_i) = \{p_j | ||c_i - c_j||_2 < r\}$
- Center Embedding : the tracked target is closer to its previous position than intra-class distractors (if the sample frequency is relatively high)

$$m_i^c = \exp(-\frac{||c_i - \bar{c}||_2^2}{2\sigma^2})$$

EXPERIMENTAL RESULTS

Method	Car	Pedestrian	Van	Cyclist	Mean	
Method	(6424)	(6088)	(1248)	(308)	(14068)	
SC3D	41.3/57.9	18.2/37.8	40.4/47.0	41.5/70.4	31.2/48.5	
P2B	56.2/72.8	28.7/49.6	40.8/48.4	32.1/44.7	42.4/60.0	
3DSiamRPN	58.2/76.2	35.2/56.2	45.7/52.9	36.2/49.0	46.7/64.9	
LTTR	65.0/77.1	33.2/56.8	35.8/45.6	66.2/89.9	48.7/65.8	
MLVSNet	56.0/74.0	34.1/61.1	52.0/61.4	34.3/44.5	45.7/66.7	
BAT	60.5/77.7	42.1/70.1	52.4/67.0	33.7/45.4	51.2/72.8	
PTT	67.8/81.8	44.9/72.0	43.6/52.5	37.2/47.3	55.1/74.2	
V2B	70.5/81.3	48.3/73.5	50.1/58.0	40.8/49.7	58.4/75.2	
PTTR	65.2/77.4	50.9/81.6	52.5/61.8	65.1/90.5	57.9/78.1	
STNet	72.1/84.0	49.9/77.2	58.0/70.6	73.5/93.7	61.3/80.1	
M2-Track	65.5/80.8	61.5/88.2	53.8/70.7	73.2/93.5	62.9/83.4	
CXTrack	69.1/81.6	67.0/91.5	60.0/71.8	74.2/94.3	67.5/85.3	
Improvement	↓3.0/↓2.4	↑5.5/↑3.3	↑2.0/↑1.1	↑0.7/↑0.6	↑4.6/↑1.9	

Component	FLOPs	#Params	Infer Speed
backbone	3.18G	1.3M	8.5ms
transformer	1.28G	14.7M	10.9ms
X-RPN	0.17G	2.3M	3.0ms
pre/postprocess	-	-	6.8ms
CXTrack	4.63G	18.3M	29.2ms(34FPS)

Method	Car	Pedestrian	Van	Cyclist	Mean
	(15578)	(8019)	(3710)	(501)	(27808)
SC3D	25.0/27.1	14.2/16.2	25.7/ 21.9	17.0/18.2	21.8/23.1
P2B	27.0/29.2	15.9/22.0	21.5/16.2	20.0/26.4	22.9/25.3
BAT	22.5/24.1	17.3/24.5	19.3/15.8	17.0/18.8	20.5/23.0
V2B	31.3/35.1	17.3/23.4	21.7/16.7	22.2/19.1	25.8/29.0
STNet	32.2/36.1	19.1/27.2	22.3/16.8	21.2/29.2	26.9 /30.8
CXTrack	29.6/33.4	20.4/32.9	27.6 /20.8	18.5/26.8	26.5/ 31.5
Improvement	↓2.6/↓2.7	↑1.3/↑5.7	1.9/↓1.1	↓3.7/↓2.4	↓0.4/↑0.7

Method	Vehicle(185731)			Pedestrian(241752)				Maan(427483)	
	Easy	Medium	Hard	Mean	Easy	Medium	Hard	Mean	Mean(427465)
P2B	57.1/65.4	52.0/60.7	47.9/58.5	52.6/61.7	18.1/30.8	17.8/30.0	17.7/29.3	17.9/30.1	33.0/43.8
BAT	61.0/68.3	53.3/60.9	48.9/57.8	54.7/62.7	19.3/32.6	17.8/29.8	17.2/28.3	18.2/30.3	34.1/44.4
V2B	64.5/71.5	55.1/63.2	52.0/62.0	57.6/65.9	27.9/43.9	22.5/36.2	20.1/33.1	23.7/37.9	38.4/50.1
STNet	65.9/72.7	57.5/66.0	54.6/64.7	59.7/68.0	29.2/45.3	24.7/38.2	22.2/35.8	25.5/39.9	40.4/52.1
CXTrack	63.9/71.1	54.2/62.7	52.1/63.7	57.1/66.1	35.4/55.3	29.7/47.9	26.3/44.4	30.7/49.4	42.2/56.7
Improvement	↓2.0/↓1.6	↓3.3/↓3.3	↓3.5/↓1.0	\downarrow 2.6/ \downarrow 1.9	↑6.2/↑10.0	↑5.0/↑9.7	<u></u> ↑4.1/ <u></u> †8.6	↑5.2 <i>I</i> ↑9.5	↑1.8/↑4.6

EXPERIMENTAL RESULTS

LIMITATIONS & FUTURE WORK

Failure cases

- The point clouds are too sparse to capture informative local geometry \rightarrow Light-weight design
- Large appearance variations occur(target missing) → Exploiting historical information
- The scale of the displacement between training and testing data differs significantly

THANK YOU!

Tian-Xing Xu xutx21@mails.tsinghua.edu.cn