

Pseudo-label Guided Contrastive Learning for Semi-supervised Medical Image Segmentation

Paper ID: 3018 Poster ID: THU-AM-314

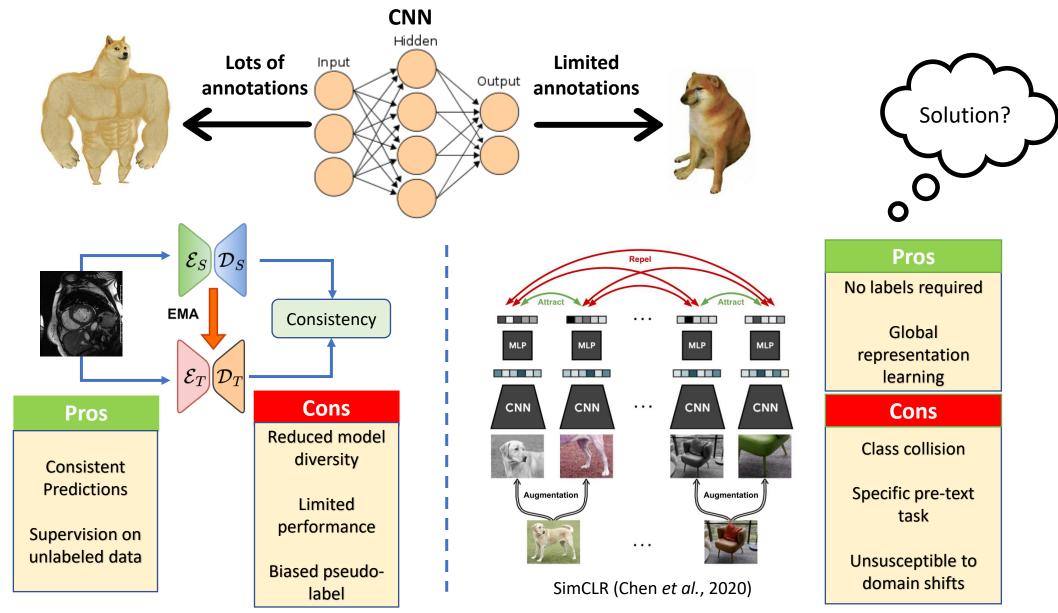
Hritam Basak; Zhaozheng Yin

Dept. of Computer Science, Stony Brook University, NY, USA

Overview

- We propose a pseudo-label guided contrastive learning (PLGCL) framework
- Pseudo-labels generated from SemiSL aids CL by providing additional guidance
- Class-discriminative feature learning in CL aids multi-class segmentation in SemiSL
- Introduce a novel contrastive loss term on top of InfoNCE loss [Oord et al.]
- Alleviates the requirement of pretext training
- Outperforms SoTA in medical image segmentation tasks from three different modalities (CT, MRI, Histopathology)

SemiSL and SSL in Medical Image Segmentation



JUNE 18-22, 2023

Our Solution: Combining SemiSL in CL

Problem 1: Class collision – semantically similar objects forcefully contrasted in CL

Solution: We propose average patch-entropy based patch sampling for guided sampling of *pos.* and *neg.*

$$Ent_{i,j}^{k} = \frac{\sum_{m \in P_{i,j}^{k}} \mathcal{F}(I_{i}^{'k}(m))}{|P_{i,j}^{k}|}, \text{ where }$$
$$\mathcal{F}(x) = -x \log(x) - (1-x) \log(1-x)$$

Problem 2: Defining pretext task difficult, insusceptibility to multiple domains for CL

<u>Solution</u>: Alleviate pretext training, instead use single training stage. Produces SoTA performance on multiple modalities (CT, MRI, Histopathology)

Problem 3: Biased pseudo-labels, limited segmentation performance in SemiSL

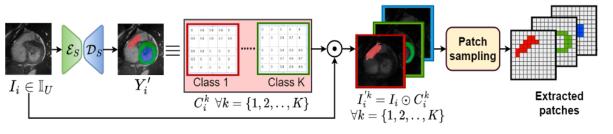
Solution: Class-specific information learnt in CL aids multiclass segmentation performance. Pseudo-labels generated in SemiSL provides additional guidance to unsupervised metric learning, i.e. CL

Proposed Method

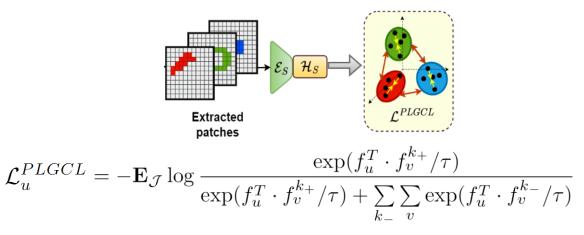
<u>Step 1</u>: Generate pseudo-label Y_i' from input image I_i

 $\overbrace{I_i \in \mathbb{I}_U}^{\bullet} \xrightarrow{\mathcal{E}_S \mathcal{D}_S} \xrightarrow{\mathcal{D}_S} \xrightarrow{\mathcal{D}_S} \xrightarrow{Y_i'}$

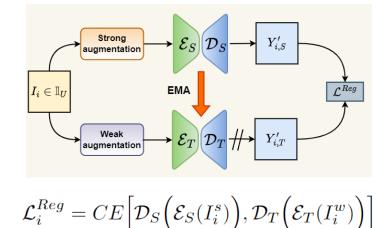
<u>Step 2</u>: Generate class-wise patches from Y'_i



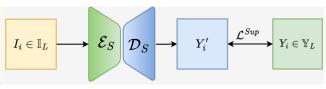
<u>Step 3</u>: Extract feature embeddings, define *pos.* and *neg.* for CL and compute contrastive loss



Step 4: Refine pseudo-labels using mean-teacher network



Step 5: Utilize labelled data in supervised training



$$\mathcal{L}_{i}^{Sup} = CE\Big[\mathcal{D}_{S}\Big(\mathcal{E}_{S}(I_{i})\Big), Y_{i}\Big]$$

<u>Step 6</u>: Compute total loss, model trained iteratively

$$\mathcal{L}_{i}^{total} = \frac{1}{|\mathcal{B}_{L}|} \sum_{I_{i} \in \mathcal{B}_{L}} \mathcal{L}_{i}^{Sup} + \beta \frac{1}{|\mathcal{B}_{U}|} \sum_{I_{i} \in \mathcal{B}_{U}} \mathcal{L}_{i}^{Reg} + \gamma \frac{1}{|\mathcal{B}|} \sum_{I_{i} \in \mathcal{B}} \mathcal{L}_{i}^{PLGCL}$$

<u>Results</u>

Method	labeled	Evaluation Metrics			
Witthou	data (%)	DSC ↑	HD95 ↓	ASD .	
UA-MT [65]		0.816	12.35	3.62	
Double-UA [56]		0.833	5.31	1.92	
MC-Net [59]		0.863	7.08	2.08	
MC-Net+ [58]	10%	0.871	6.68	2.00	
SASSNet [29]	10%	0.841	5.03	1.40	
DTC [32]		0.827	10.81	2.99	
LCLPL [10]		0.881	5.11	1.81	
Ours		0.891	4.98	1.80	
UA-MT [65]		0.857	4.06	1.54	
URPC [34]		0.851	4.26	1.77	
MC-Net [59]		0.878	3.91	1.52	
MC-Net+ [58]	20%	0.885	4.35	1.54	
SASSNet [29]	2070	0.871	5.84	2.15	
DTC [32]		0.863	6.14	2.11	
LCLPL [10]		0.905	3.91	1.51	
Ours		0.912	3.82	1.49	
Supervised	100%	0.923	3.66	1.41	

Method	labeled	Evaluation Metrics				
Meenod	data (%)	DSC ↑	HD95↓	ASD ↓		
UA-MT [65]		0.871	11.74	3.56		
SASSNet [29]		0.888	8.32	2.34		
CoraNet [45]		0.882	8.21	2.44		
DTC [32]	2.50%	0.885	7.99	2.40		
GBDL [51]		0.898	6.85	1.78		
Triple-UA [52]		0.878	7.94	2.42		
Double-UA [56]		0.887	8.04	2.34		
Ours		0.905	6.75	1.75		
UA-MT [65]		0.883	9.46	2.89		
SASSNet [29]		0.891	7.54	2.51		
CoraNet [45]		0.898	7.23	1.81		
DTC [32]	10%	0.894	7.31	1.91		
GBDL [51]		0.911	6.38	1.51		
Triple-UA [52]		0.887	7.55	2.12		
Double-UA [56]		0.895	7.42	2.16		
Ours		0.919	6.32	1.51		
Supervised	100%	0.934	6.10	1.44		

(a) ACDC

(b) KiTS19

	Method	labeled	Evaluation Metrics			
	Method	data (%)	DSC ↑	HD95↓	ASD↓	
	ICT [48]		0.862	1.52	2.39	
	Double-UA [56]		0.877	1.45	2.56	
Table: Quantitative	HCE [26]		0.874	1.31	2.44	
	DTC [32]	10%	0.841	1.81	2.61	
comparison with SoTA	TCSM [30]		0.853	1.52	2.46	
•	UA-MT [65]		0.816	1.89	2.58	
	Ours		0.882	1.50	2.42	
	ICT [48]		0.866	1.46	2.22	
	Double-UA [56]		0.883	1.28	2.06	
	HCE [26]		0.885	1.23	2.11	
	DTC [32]	20%	0.859	1.70	2.24	
	TCSM [30]		0.877	1.41	2.36	
	UA-MT [65]		0.856	1.69	2.13	
	Ours		0.891	1.24	2.01	
	Supervised	100%	0.911	1.19	1.88	

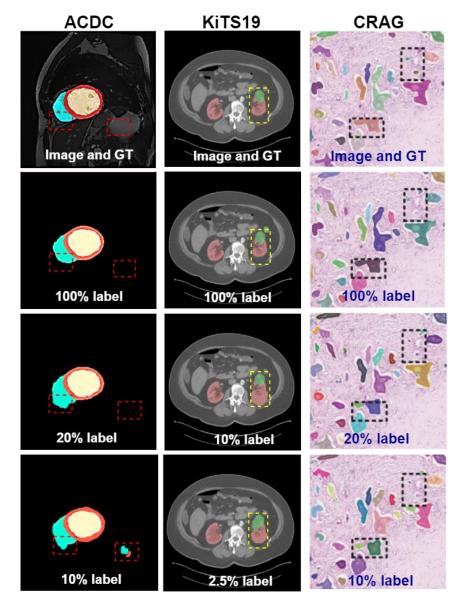


Figure: Qualitative visualization

Ablation Experiments

Table: Quantitative analysis forcontribution of individual components

Method		ACDC			KiTS19			CRAG		
Warm-up	PLGCL	DSC↑	HD95↓	ASD↓	DSC↑	HD95↓	ASD↓	DSC ↑	HD95↓	ASD↓
x	×	0.799	8.77	4.44	0.831	8.04	3.11	0.813	2.36	3.44
✓	×	0.822	7.54	3.61	0.855	7.72	2.62	0.819	2.04	3.52
×	\checkmark	0.885	5.21	2.04	0.901	6.41	1.81	0.873	1.64	2.53
~	√	0.891	4.98	1.80	0.919	6.32	1.51	0.882	1.50	2.42

Table: Comparison of different metrics for patch sampling on the ACDC dataset.

Similarity metric	Ι	abel = 109	16	Label = 20%			
Similarity metric	DSC↑	HD95↓	ASD↓	DSC↑	HD95 ↓	ASD↓	
Cosine similarity	0.820	9.118	6.016	0.832	7.611	4.445	
Class Confidence	0.873	5.091	2.878	0.877	4.497	2.014	
Entropy (ours)	0.891	4.980	1.802	0.912	3.823	1.491	

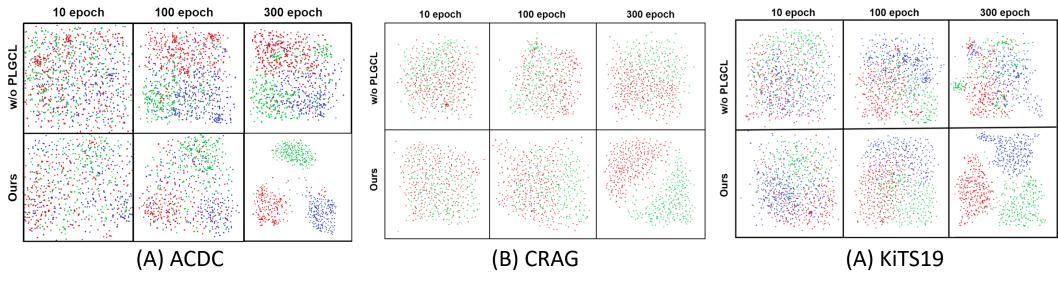


Figure: Clustering performance with and without PLGCL

Conclusion

- We propose a novel pseudo-label guided patch-based contrastive learning approach for medical image segmentation
- Pseudo-label from semi-supervised learning improves contrastive learning and vice versa
- We also introduce a new contrastive loss named PLGCL which is defined as the expectation of InfoNCE loss over the joint distribution of positives and negatives
- We also introduce a guided positive and negative sampling strategy for CL using average patch entropy.
- Achieves SoTA performance for multiclass medical image segmentation on three datasets from multiple modalities (CT, MRI, Histopathology)

Thank You

