

Few-Shot Learning with Visual Distribution Calibration and Cross-Modal Distribution Alignment

Wang Runqi, Zheng Hao, Duan Xiaoyue, Liu Jianzhuang, Lu Yuning, Wang Tian, Xu Songcen, Zhang Baochang

CVPR2023-2990 THU-PM-271

Abstract

Background and Challenges

- The frame of CLIP are shown on the left and middle figures. The right figure is a comparison of the CLIP pre-training model with the few-shot learning results of the public models (the gray lines are other models in eval).
- The Zero-shot CLIP nearly matches the best results of the 16-shot linear classifier in the common model. The linear layer fine-tuned by only 16-shot can give the best results over BiT-M and SimCLRv2 by a wide margin.
- Twenty datasets, including ImageNet, were used in this analysis .

Background and Challenges

Method

Method——Augmentation Strategy

Step1

The images and prompt were augmented in J groups, each containing L prompt and one image.

Step2

- Rotating,
- > Flipping,
- Random gray scaling,
- Random cropping+Resizing,
- > None,
- Color jittering,
- Gaussian blurring

From the above 7 augmentations, the most suitable J augmentations is searched

Method——Selective Attack (SA)

((<

Step1 ➤ Constructing spatial attention. Step2 ➤ Spatial attention guides perturbation to selective attack.

$$egin{aligned} p(y_i|\mathbf{x}_{i,j}) &= rac{e^{\langle \mathbf{z}_{i,j}, \ \sum_l g(\mathbf{t}_{y_i}(\mathbf{P}_{l,j}))/L
angle/ au}}{\sum_{k=1}^K e^{\langle \mathbf{z}_{i,j}, \ \sum_l g(\mathbf{t}_k(\mathbf{P}_{l,j}))/L
angle/ au}}, \ \mathbf{F}_{i,j} &= arphi(f_j^{7 imes 7}(\mathbf{x}_{i,j})) \ \mathbf{M}_{i,j} &= arphi(f_j^{3 imes 3}([\mathbf{F}_{i,j}^{avg},\mathbf{F}_{i,j}^{max}])) \ \mathbf{x}'_{i,j} &= \mathbf{x}_{i,j} + k(\mathbf{M}_{i,j}) \circ \delta \ &= \mathbf{x}_{i,j} + (1 - \mathbf{M}_{i,j} \circ \mathbf{M}_{i,j}) \circ \delta. \end{aligned}$$

Method——Cross-Modal Distribution Alignment (CMDA)

Step1

The Vision-Language Prototype (VLP) was built through EMD.)

$$\mathcal{L}_{ ext{EMD}} riangleq \sum_k (\|oldsymbol{\mu}_{ ext{v}}^k - oldsymbol{\mu}_{ ext{w}}^k\|^2 + \|oldsymbol{\Sigma}_{ ext{v}}^{krac{1}{2}} - oldsymbol{\Sigma}_{ ext{w}}^{krac{1}{2}}\|^2)$$

Step2

Inference period: VLPs corrects image feature to realize CMDA.

$$\mathbf{d} = (d_1, d_2, \dots, d_K)^T, \ d_k = \frac{1}{\|\mathbf{z}_i - \mathbf{v}_k\|},$$
$$\bar{\mathbf{d}} = (\bar{d}_1, \bar{d}_2, \dots, \bar{d}_K)^T, \ \bar{d}_k = \frac{d_k}{\sum_{m=1}^K d_m},$$

 $p(y_i|\mathbf{x}_i) = \frac{e^{\langle (1-\alpha)\mathbf{z}_i + \alpha(\bar{\mathbf{d}}^T \mathbf{V} \mathbf{L} \mathbf{P})^T, \sum_l g(\mathbf{t}_{y_i}(\mathbf{P}_{l,j}))/L \rangle/\tau}}{\sum_{k=1}^K e^{\langle (1-\alpha)\mathbf{z}_i + \alpha(\bar{\mathbf{d}}^T \mathbf{V} \mathbf{L} \mathbf{P})^T, \sum_l g(\mathbf{t}_k(\mathbf{P}_{l,j}))/L \rangle/\tau}}$

Expeiments

Table 1. Effect of the augmentation on prompt diversity.

Group j	Mean				Std
	1	2	3	4	Siu
SADA w/o Aug	0.0954	0.0923	0.0892	0.0998	0.0045
SADA	0.1035	0.1441	0.0855	0.1173	0.0247

Table 2. Ablation of SA and CMDA on CIFAR10.

#Shots	1	2	4	8	16
Baseline	74.61%	76.40%	78.34%	79.63%	80.90%
Baseline w SA	77.61%	78.2%	79.63%	80.53%	81.38%
Baseline w CMDA	76.79%	77.37%	79.02%	80.15%	81.31%

Table 3. Ablation on the objective function to optimize the VLPs.

#Shots	1	2	4	8	16
EMD	76.7%	77.3%	79.0 %	80.1%	81.3%
MMD	73.5%	76.1%	77.4%	79.7%	80.5%
JS-Divergence	74.3%	75.9%	77.6%	79.2%	80.1%

Figure 1. Main results of few-shot learning on 11 datasets. Our SADA consistently shows better performance than prior arts across different number of training samples.

Figure 7. 1-shot accuracy (%) on CIFAR10 when SA is at different layers of the image encoder.

Figure 8. 1-shot accuracy (%) of different calibration ratio α .

Figure 9. Effect of VLPs on CIFAR10.

Figure 10. Visualization of attacked areas (in red) guided by $1 - \mathbf{M} \circ \mathbf{M}$. The images are from ImageNet-1k.