

Towards Scalable Neural Representation for Diverse Videos

Bo He¹, Xitong Yang², Hanyu Wang¹, Zuxuan Wu³, Hao Chen¹,

Shuaiyi Huang¹, Yixuan Ren¹, Ser-nam Lim², Abhinav Shrivastava¹

¹ University of Maryland, College Park ² Meta Al ³ Fudan University

Poster: TUE-PM-192

Website and Code: <u>https://boheumd.github.io/D-NeRV</u>

Overview

- D-NeRV is an implicit neural representation designed for large-scale and diverse videos.
- D-NeRV achieves SoTA on the video compression task.
- D-NeRV shows its advantages as an efficient and effective dataloader for downstream video understanding task.

Background

• Video Representations: Explicit vs. Implicit

Comparison of NeRV and D-NeRV

NeRV

- Limited to encode several **short** videos.
- Optimize representation to each video *independently*.

D-NeRV

- Designed for encoding large-scale and diverse videos.
- Encodes all videos into a *shared* model by conditioning on *keyframes*.

Motivation

- Motivation: How to encode large-scale and diverse videos using the implicit neural representation?
- Naive Solution: Encode each video with a *separate* model.
- **Observation:** Encode diverse videos in a *shared* model, PSNR performance increases

as the video count increases.

Architecture

- Encoder-Decoder: conditions on keyframes from each video
- **Optical Flow:** reduces spatial redundancies
- Temporal Modeling: model relationship across frames

Visual Content Encoder

Motivation: Visual content of each video varies significantly, directly memorizing all videos introduces too much optimization complexity.

Solution: Sample keyframes from each video as conditional input.

Task-oriented Optical Flow

Motivation: Reduce spatial redundancies across frames in the RGB space. **Solution:** Predict task-oriented optical flow w.r.t. the keyframes.

Global Temporal Modeling

Motivation: NeRV outputs each frame independently and neglects temporal relationship across frames.

Solution: Model global temporal relationship for each video clip.

Ablation Studies

Model	UVG		UCF101	
	PSNR	MS-SSIM	PSNR	MS-SSIM
NeRV	34.13	0.948	28.00	0.935
+ GTMLP	33.94	0.946	27.96	0.935
+ SAF	35.84	0.960	30.78	0.962
+ GTMLP	36.32	0.963	30.94	0.964
+ Flow	36.99	0.977	31.44	0.968

Contribution of each components

- SAF: spatially-adaptive fusion
- GTMLP: global temporal MLP
- Flow: multi-scale flow estimation

Video Diversity Ablation

- Total video count fixed to 1000.
- 2. Change the number of action classes (diversity).
- 3. D-NeRV is more capable of representing diverse videos.

	#Class	PSNR	MS-SSIM
	10	27.95	0.935
NeRV	100	26.66	0.915
	\bigtriangledown	-1.29	-0.02
D-NeRV	10	29.74	0.950
	100	29.36	0.946
	\bigtriangledown	-0.38	-0.004

Video Compression Visualization

Ground Truth

NeRV

Video Compression

UVG dataset

D-NeRV as Dataloader

Downstream Action Recognition Task

• D-NeRV encodes the whole UCF101 dataset, use it as dataloader

Model	S	Μ	L
GT	91.3	91.3	91.3
H.264	77.2	82.4	85.5
NeRV	71.9	75.9	80
D-NeRV	81.1	84.4	86.4
	1		

Action recognition

Method	VPS ↑	
Frame (Tab. 8 GT)	273	
H.264	265	
DCVC	0.9	
NeRV (fp32)	383	
D-NeRV (fp32)	266	
NeRV (fp16)	454	
D-NeRV (fp16)	363	

Decoding speed

Decoding speed is much faster than learning-based methods

Video Inpainting Visualization

(a) Ground Truth

(c) D-NeRV

⁽b) NeRV

Thank You!

For more details, please visit **Poster# 192** at **20-Jun-23, 4:30pm-6:30pm**

Website and Code:

https://boheumd.github.io/D-NeRV

