

Exploring the Effect of Primitives for Compositional Generalization in Vision-and-Language

Chuanhao Li¹, Zhen Li¹, Chenchen Jing³, Yunde Jia^{2,1}, Yuwei Wu^{2,1}

¹Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science & Technology, Beijing Institute of Technology, China ²Guangdong Lab of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT University, China ³School of Computer Science, Zhejiang University, Hangzhou, China

> {lichuanhao, li.zhen, jiayunde, wuyuwei}@bit.edu.cn jingchenchen@zju.edu.cn

Motivation

(Video:		
i	Query: A person opens the door.	←───→	
ļ	Query: A person closes the door.		└────→
	Query: The person opens a door.	 ←───→ 	ا ر/

- An indispensable premise for improving compositional generalization is to understand the effect of the primitives, including words, image regions, and video frames. Primitives are compositional building blocks mainly involved in V&L tasks and the determinants of sample semantics.
- Existing methods cannot correctly establish the relationship between the primitives and the sample semantics and thus the ground-truth, so they cannot achieve compositional generalization.

Motivation

- We present a self-supervised learning based framework that equips existing V&L methods with
- > semantic equivariance
- semantic invariance
- by generating numerous labeled training samples, including
- equivariant samples
- invariant samples

(a) An original example in the context of temporal video grounding. Query: A [MASK] is [MASK] next to a refrigerator. Prediction (b) Equivariant samples generated by masking critical primitives. Query: A person is smiling [MASK] to a refrigerator. Prediction 🗸 Query: A person is smiling next to a refrigerator.

(c) Invariant samples generated by masking irrelevant primitives.

Framework

Beijing Institute of Technology

Effect Estimation of Primitives

➢ For words,

nouns/verbs: α , adjectives/adverbs: β , other words: γ

For image regions, word-region similarities: pre-trained CLIP^[1]

For video frames,

frame-query similarities: pre-trained TCL^[2]

We quantify all of the effect of primitives as numbers in the interval [0, 1].

[1] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML 2021.[2] Yang, Jinyu, et al. "Vision-language pre-training with triple contrastive learning." CVPR. 2022.

Beijing Institute of Technology

Sample Generation

Equivariant samples
Definition: a series of samples that have <u>different semantics</u> from the original samples.

Generation: randomly mask primitives with high effect.

> Invariant samples

Definition: a series of samples that have <u>same semantics</u> from the original samples.

Generation: randomly mask primitives with <u>low</u> effect.

Optimization

Method-specific Loss

$$\mathcal{L}_{ms} = f(P(V,Q),Y) + \lambda_i f(P(V^i,Q^i),Y),$$

Self-supervised Learning Loss

 $\mathcal{L}_{ssl} = u \cdot P(V^e, Q^e)[g(Y)],$

Contrastive Learning Loss

$$\mathcal{L}_{cl} = -\log(\frac{e^{h(P(V,Q),P(V^{i},Q^{i}))}}{e^{h(P(V,Q),P(V^{i},Q^{i}))} + e^{h(P(V,Q),P(V^{e},Q^{e}))}}),$$

where $f(\cdot,\cdot)$ is the loss function used in the selected method, $g(\cdot)$ converts Y to its index in all categories, and $h(\cdot,\cdot)$ is cosine similarity.

Beijing Institute of Technology

Experiments

Table 1. Performance (%) of the state-of-the-art methods on the Charades-CG dataset. The best scores are bold and the second-best scores are underlined.

Type	Method	Test-Trivial		Novel-Composition		Novel-Word				
1900		R1@0.5	R1@0.7	mIoU	R1@0.5	R1@0.7	mIoU	R1@0.5	R1@0.7	mIoU
Weakly-supervised	WSSL [10]	15.33	5.46	18.31	3.61	1.21	8.26	2.79	0.73	7.92
RL-based	TSP-PRL [36]	39.86	21.07	38.41	16.30	2.04	13.52	14.83	2.61	14.03
Proposal-free	VSLNet [42]	45.91	19.80	41.63	24.25	11.54	31.43	25.60	10.07	30.21
	LGI [27]	49.45	23.80	45.01	29.42	12.73	30.09	26.48	12.47	27.62
	VISA [22]	53.20	26.52	47.11	<u>45.41</u>	22.71	42.03 *	42.35	20.88	40.18
	TMN [23]	18.75	8.16	19.82	8.68	4.07	10.14	9.43	4.96	11.23
	2D-TAN [44]	48.58	26.49	44.27	30.91	12.23	29.75	29.36	13.21	28.47
	2D-TAN*[44]	48.06	27.10	43.72	32.74	15.25	31.50	37.12	18.99	35.04
Proposal-based	2D-TAN + Ours	53.91	31.82	46.84	35.42	17.95	33.07	43.60	25.32	39.32
	MS-2D-TAN*[43] MS-2D-TAN + Ours	<u>57.85</u> 58.14	<u>37.63</u> 37.98	<u>50.51</u> 50.58	43.17 46.54	<u>23.27</u> 25.10	38.06 <u>40.00</u>	<u>45.76</u> 50.36	<u>27.19</u> 28.78	<u>40.80</u> 43.15

* indicates the results from our reimplementation using official released codes.

* indicates that the method can be incorporated into our framework for further improvements.

Table 4. Accuracies (%) of the state-of-the-art methods on the CLEVR and CLOSURE datasets. The HM represents the harmonic mean accuracies.

_				
	Method	CLEVR	CLOSURE	HM
	MGN-e2e [¶] [32]	-	80.9	-
	Vector NMN [†] [4]	98.0	71.3	82.5
	Vector NMN ^{†‡} [4]	98.0	94.4	96.2
	$LG-NMN^{\dagger}[1]$	98.9	88.0	93.1
	TMN ^{†‡} [38]	97.9	95.4	96.6
	NS-VQA ^{†§} [41]	100	77.2	87.1
	FiLM [30]	97.0	60.1	74.2
	MAC [16]	98.5	72.4	83.5
	ViLBERT [26]	95.3	51.2	66.6
	GLT [6]	99.1	<u>96.1</u>	97.6
	$\text{GLT}^*[6]$	99.1	95.0	97.0
	GLT + Ours	<u>99.1</u>	98.4	98.7

¶ for methods trained with external correspondence labels.

[§] for methods using domain-knowledge for deterministically execution.

[†] for methods trained with external layout annotations.

[‡] for methods using external layout annotations when testing.

* for the results from our reimplementation using official released codes.

Beijing Institute of Technology

- Understanding the effect of primitives on ground-truth can implicitly improve the compositional generalization capability.
- The presented self-supervised learning framework can equip existing methods with semantic equivariance and semantic invariance.
- The proposed framework is capable of improving not only the compositional capability of existing methods, but also the IID generalization capability of them.

Thanks!

Beijing Institute of Technology