

Data-Free Sketch-Based Image Retrieval (WED-AM-368)

Abhra Chaudhuri

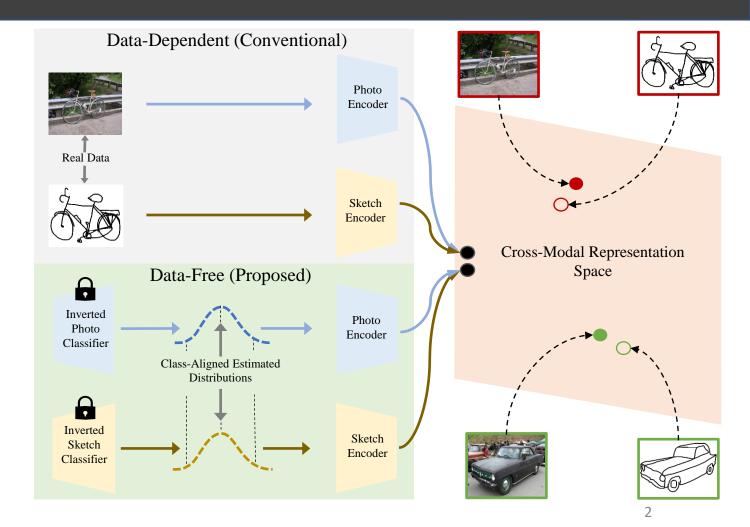
Ayan Kumar Bhunia

Yi-Zhe Song

Anjan Dutta

Preview

- Motivation: Data-dependent SBIR requires *expensive photo-sketch pairs* for training.
- **Observation:** Pre-trained photo/sketch classifiers *implicitly encode* their train set distributions.
- Action: Controlled reconstruction of such distributions for *training cross-modal* photo-sketch encoders.
- **Results:** *SBIR* can be performed in a *Data-Free* manner with considerable accuracy.



Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

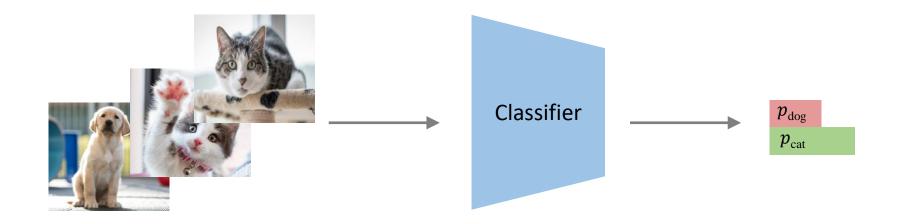
Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

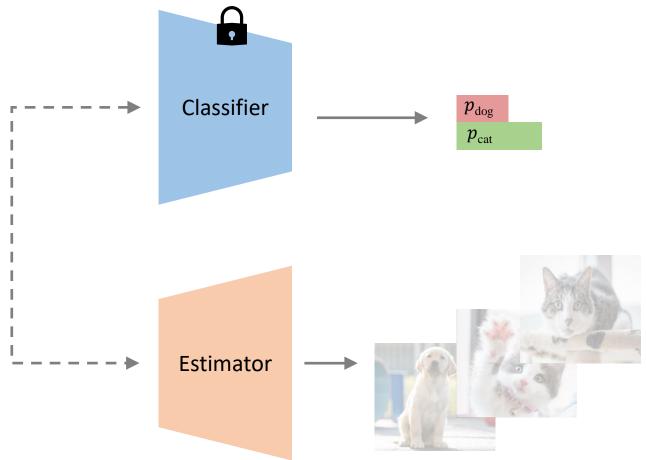
Preliminaries

- Model Inversion
- Data-Free Learning
- Adversarial Data-Free Distillation

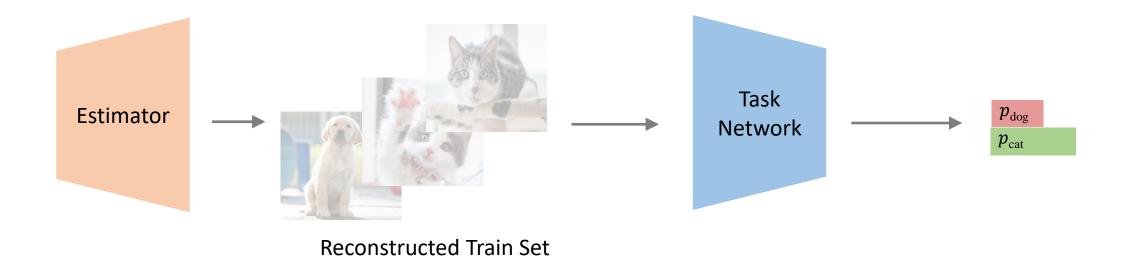
Model Inversion



Model Inversion

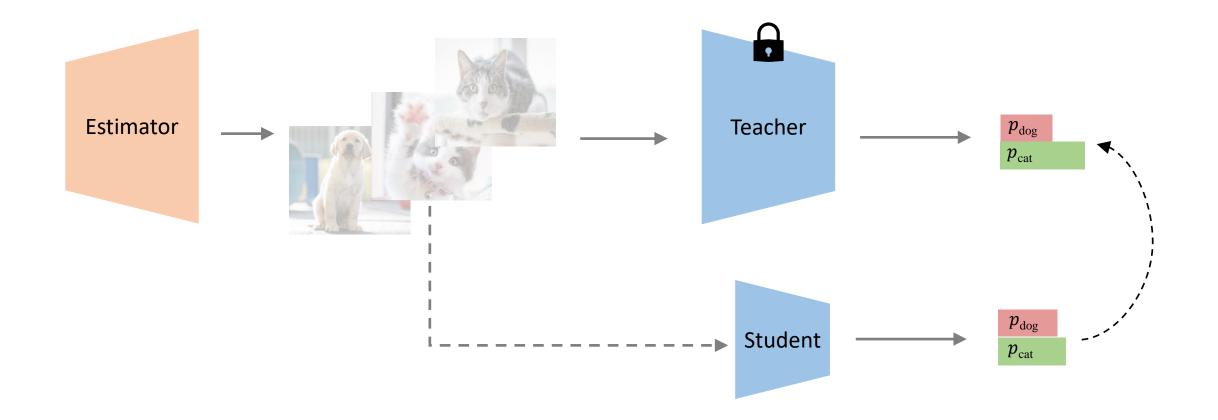


Data-Free Learning (DFL)

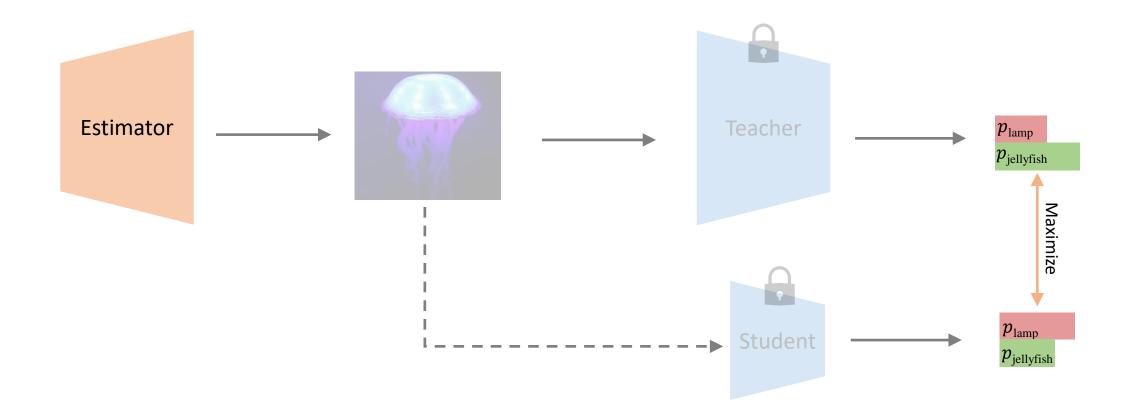


Chen et al. DAFL: Data-free learning of student networks, ICCV, 2019.

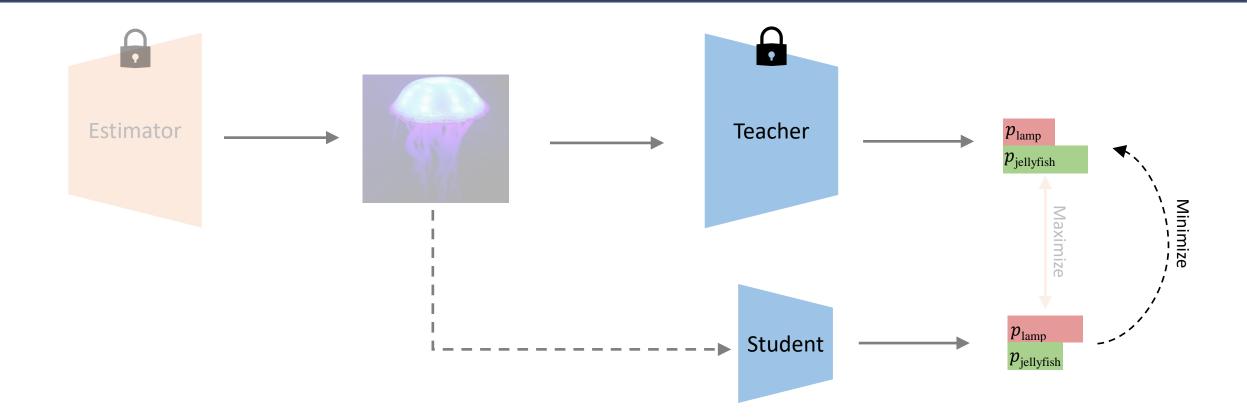
Data-Free Knowledge Distillation



Adversarial Data-Free Distillation



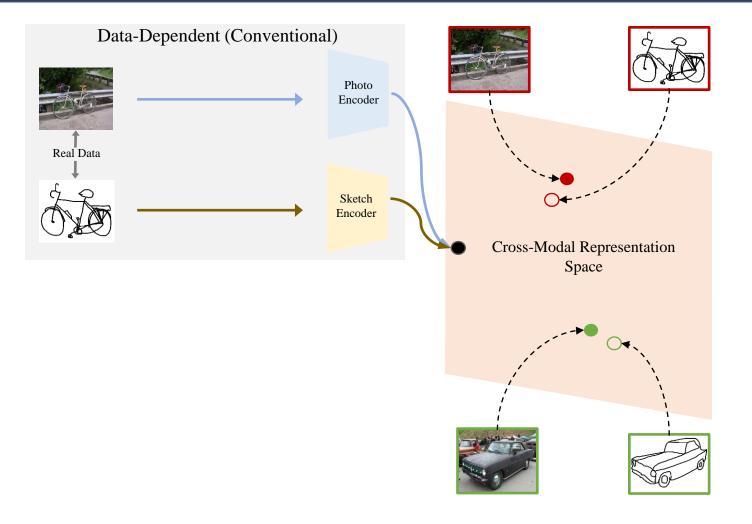
Adversarial Data-Free Distillation



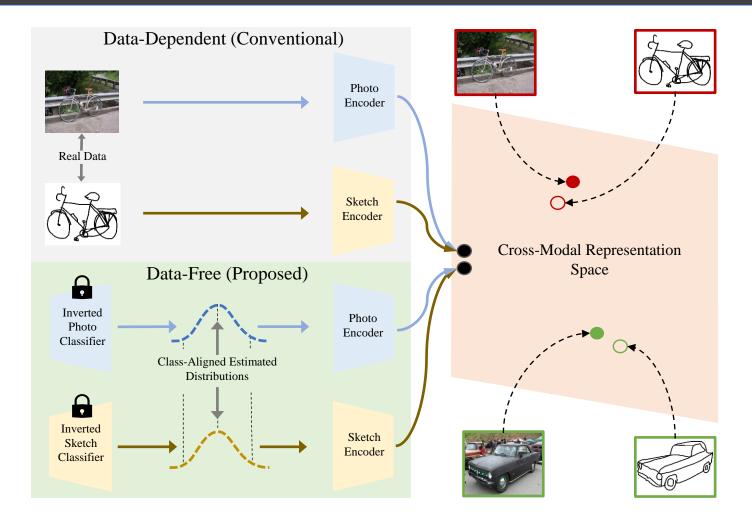
Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

Problem Definition – Data-Free SBIR



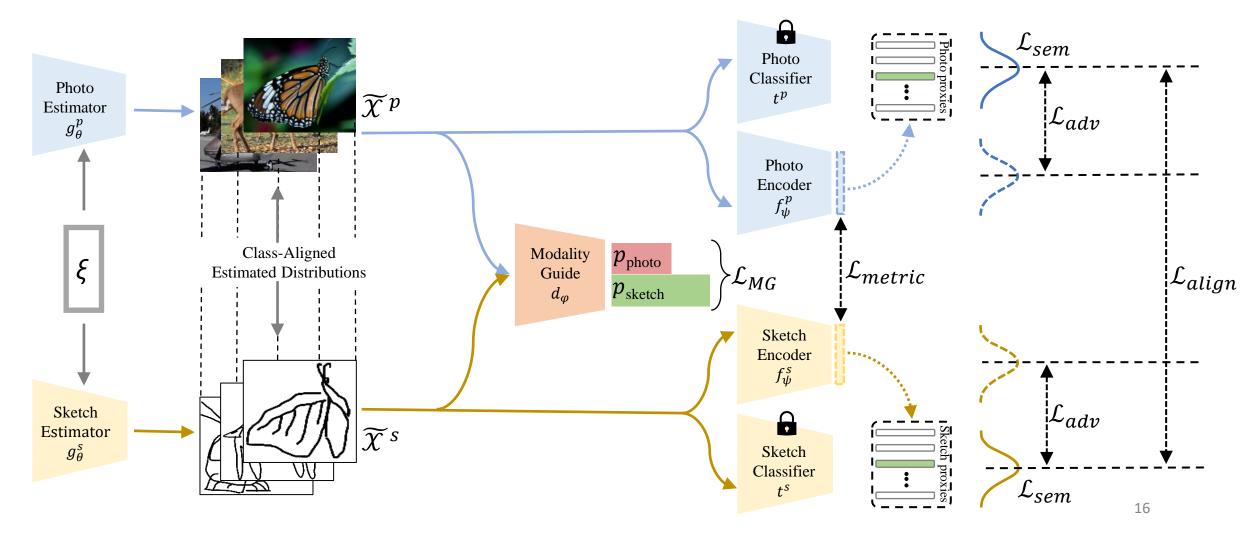
Problem Definition – Data-Free SBIR



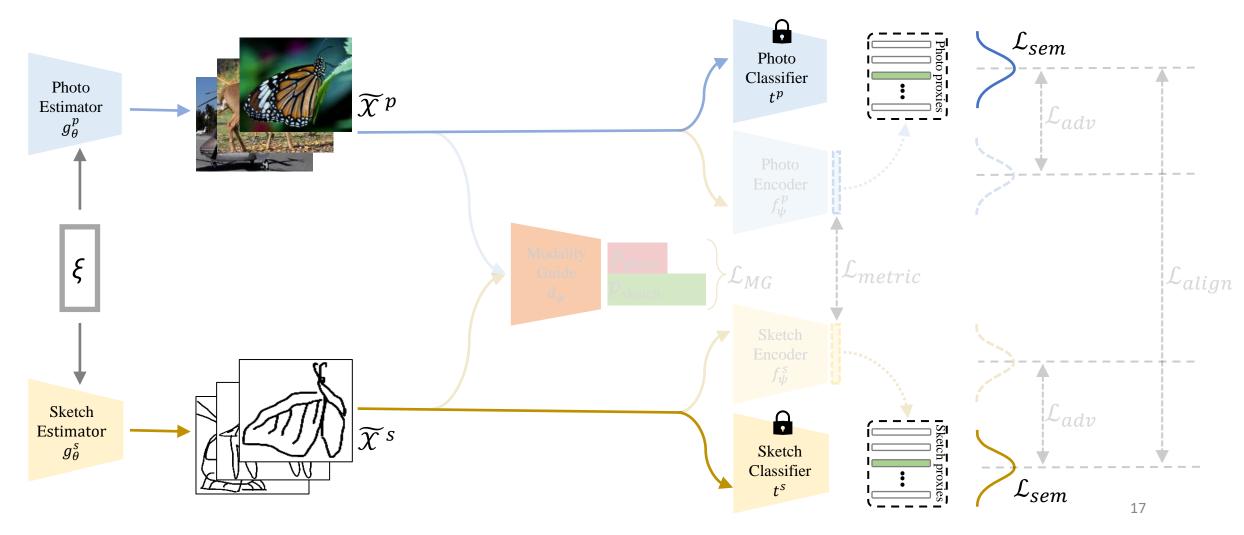
Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

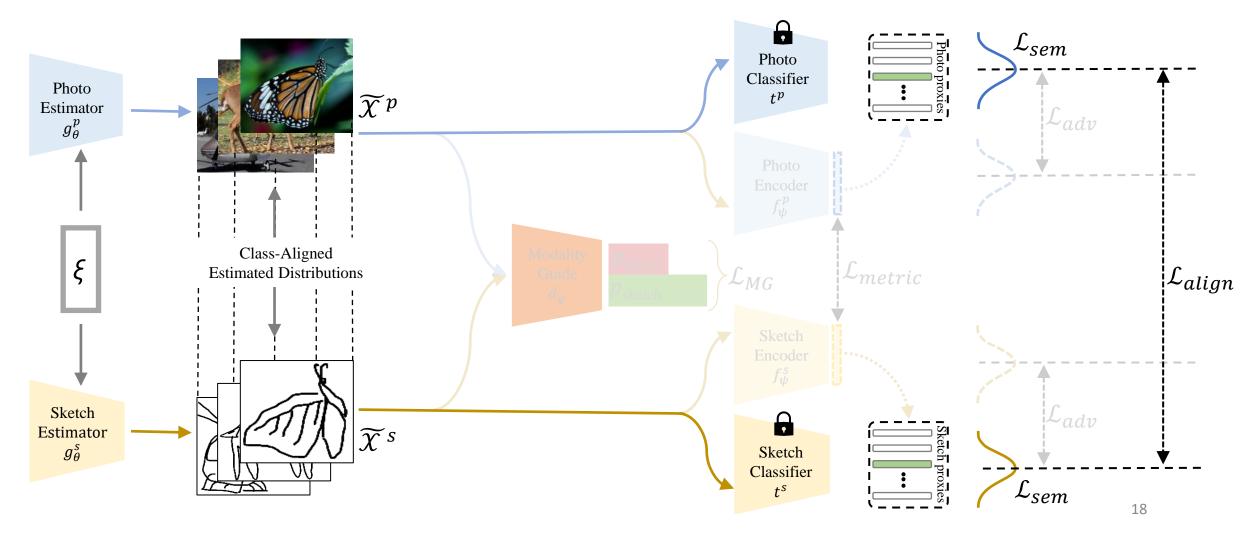
End-to-end architecture of CrossX-DFL for Data-Free SBIR.



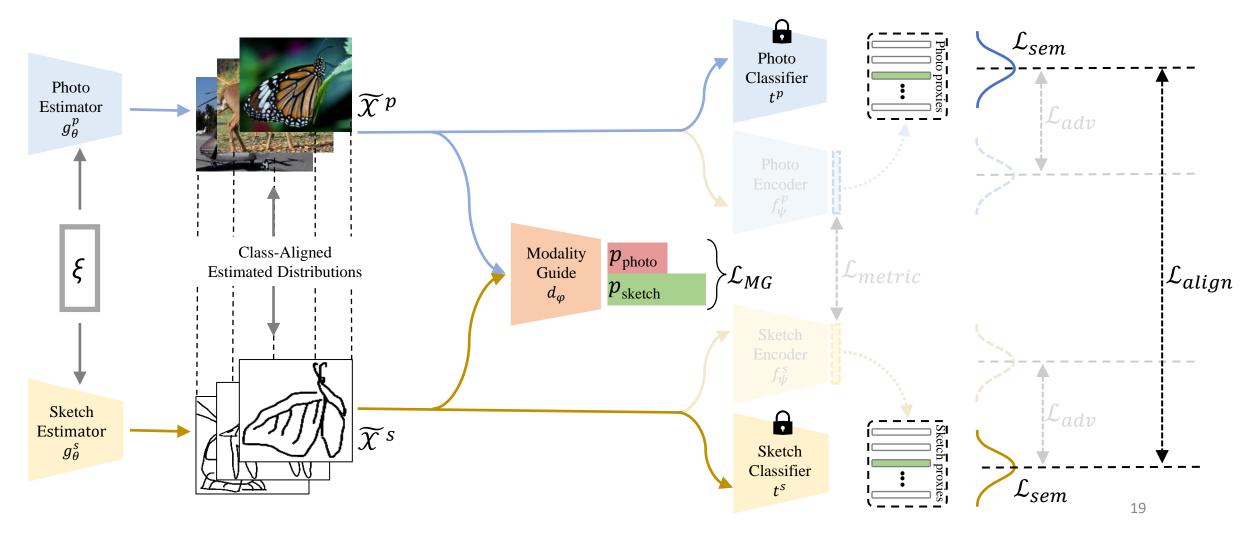
Semantic Consistency Loss: Ensures that the reconstructions belong to concrete, unambiguous classes.



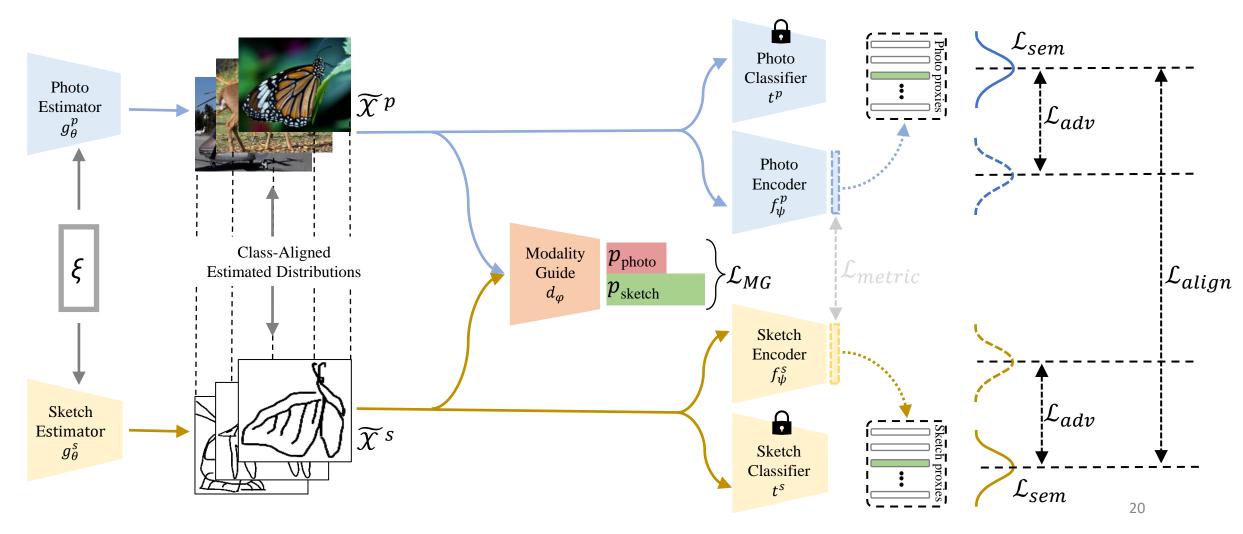
Class Alignment: Incentivises a common noise vector to induce similar label distributions across the two classifiers.



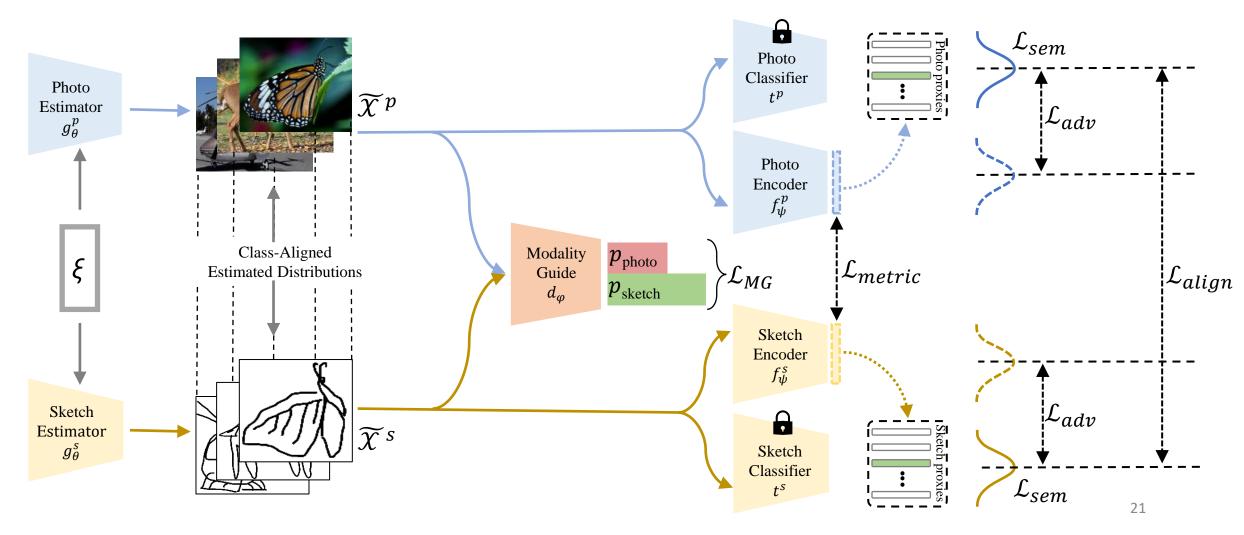
Modality Guidance: Restricts the estimators to produce modality-specific reconstructions.



Metric-Agnostic Adversarial Estimation: Adversarial reconstruction across probabilistic and Euclidean metric spaces.

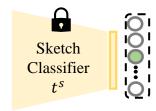


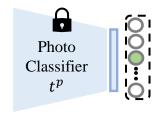
Cross-Modal Contrastive Learning: Queue-based Info-NCE minimization on the reconstructed photo-sketch pairs.



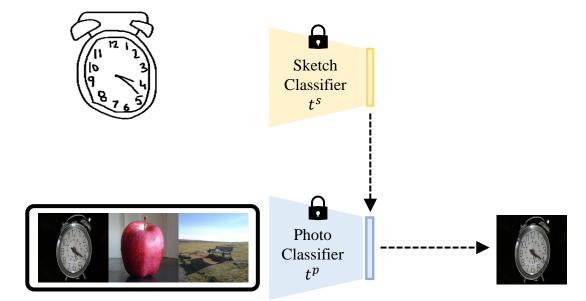
Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

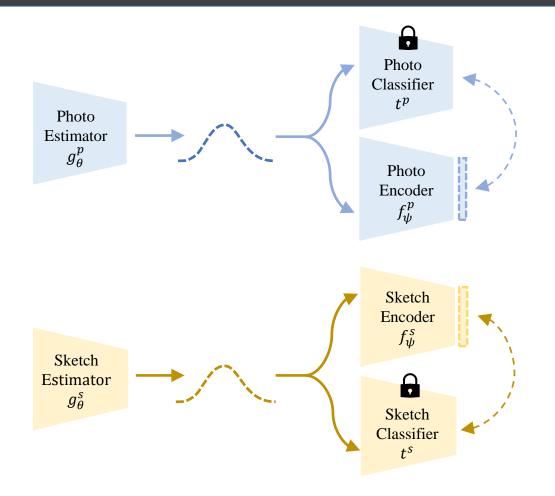




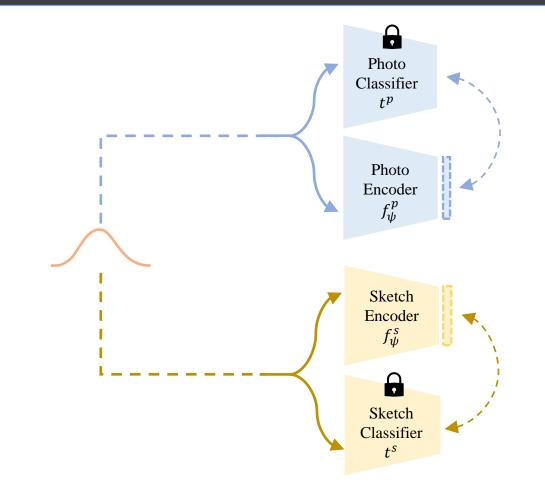
Method	Ske	etchy	TU-	Berlin	Quic	kDraw
The field	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



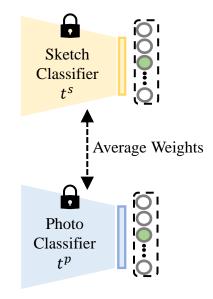
Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



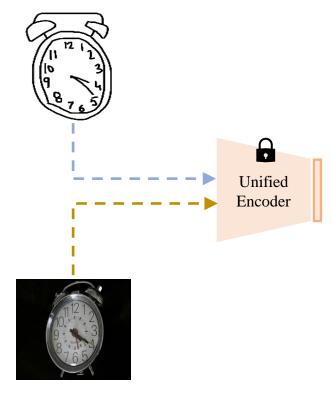
Method	Ske	etchy	TU-	Berlin	Quic	kDraw
The first	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



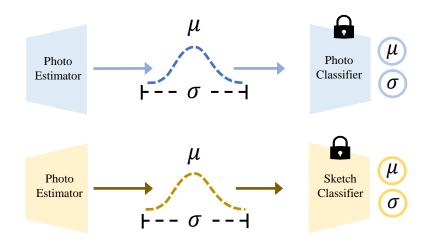
Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



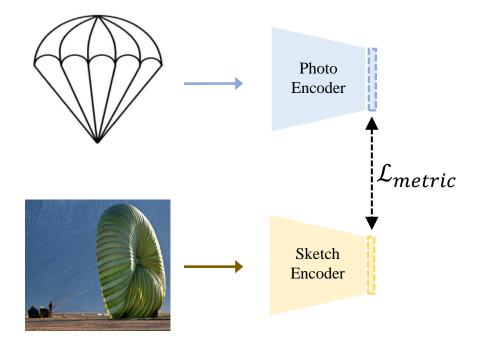
Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410

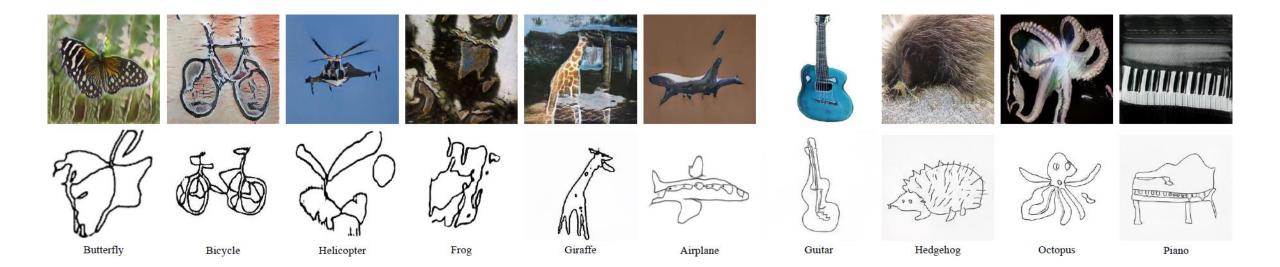


Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410



Method	Ske	etchy	TU-	Berlin	Quic	kDraw
	mAP@all	Prec@200	mAP@all	Prec@200	mAP@all	Prec@200
Classifier Only	0.530	0.542	0.330	0.338	0.160	0.180
Uni-Modal Distillation	0.529	0.537	0.291	0.295	0.130	0.140
Gaussian Prior	0.365	0.391	0.110	0.126	0.080	0.110
Averaging Weights	0.625	0.630	0.450	0.473	0.300	0.320
Meta-Data	0.573	0.576	0.380	0.395	0.200	0.221
Alternative Data	0.656	0.680	0.510	0.530	0.290	0330
Ours (CrossX-DFL)	0.827	0.831	0.680	0.693	0.400	0.410

Qualitative Reconstruction Results



Comparison with Data-Dependent Settings

Objective	Data-Dependent	Data-Free	Δ
Siamese	0.715	0.679	0.036
Triplet	0.772	0.750	0.022
MIB	0.871	0.815	0.056
Ours (CrossX-DFL)	0.862	0.827	0.035

Qualitative Ablations

Teacher - Piano: 47%, Bathtub: 1% Student - Piano: 7%, Bathtub: 45%

Teacher - Piano: 65%, Bathtub: 4% Student - Piano: 6%, Bathtub: 37% Adversarial Pair

Without Class-Alignment

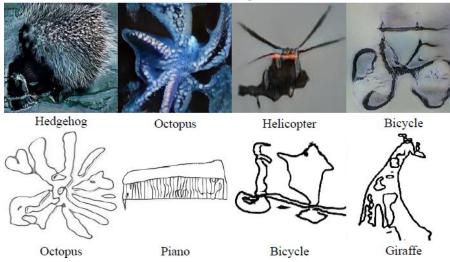




Photo Sketch Unguided

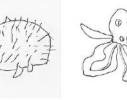
Photo Sketch

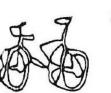
Modality Guided

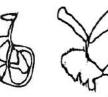
Class-Aligned

Hedgehog

Bicycle







Helicopter

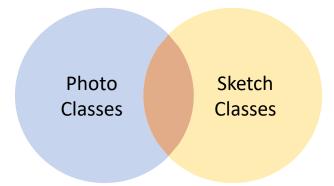
Hedgehog

Octopus

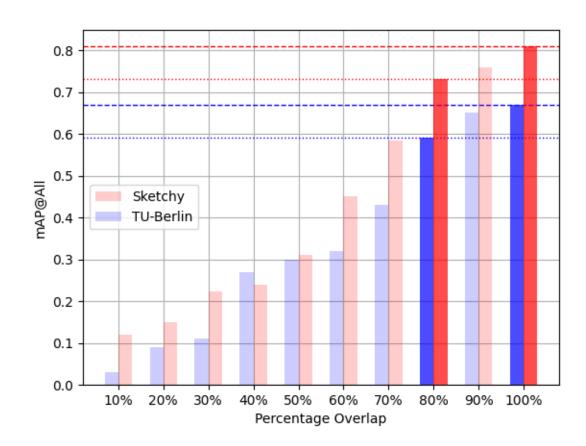
Bicycle

Helicopter

Teachers (Classifiers) with Partial Class Overlap



- Some classes are shared between the photo and sketch classifiers, while others are not.
- Retrieval is performed on the set of classes obtained via the union of photo and sketch classifier domains.



Outline

- Preliminaries
- Problem Definition
- Methodology
- Experiments
- Conclusion

- We presented CrossXDFL, an approach to train photo and sketch encoders for performing Sketch-Based Image Retrieval in a Data Free manner.
- We achieved the above by controlled reconstruction of the train set distributions of pretrained photo and sketch classifiers.
- Specifically, the following were the key components of our model *Class-Alignment* (for paired photo-sketch generation); *Modality Guidance* (for modality specific reconstruction); and *Metric-Agnostic Adversarial Estimation* (for generating hard sample that help in training robust encoders).
- CrossXDFL performs significantly better than existing DFL baselines, and competitively with respect to data-driven approaches.

- We presented CrossXDFL, an approach to train photo and sketch encoders for performing Sketch-Based Image Retrieval in a Data Free manner.
- We achieved the above by controlled reconstruction of the train set distributions of pretrained photo and sketch classifiers.
- Specifically, the following were the key components of our model *Class-Alignment* (for paired photo-sketch generation); *Modality Guidance* (for modality specific reconstruction); and *Metric-Agnostic Adversarial Estimation* (for generating hard sample that help in training robust encoders).
- CrossXDFL performs significantly better than existing DFL baselines, and competitively with respect to data-driven approaches.

- We presented CrossXDFL, an approach to train photo and sketch encoders for performing Sketch-Based Image Retrieval in a Data Free manner.
- We achieved the above by controlled reconstruction of the train set distributions of pretrained photo and sketch classifiers.
- Specifically, the following were the key components of our model *Class-Alignment* (for paired photo-sketch generation); *Modality Guidance* (for modality specific reconstruction); and *Metric-Agnostic Adversarial Estimation* (for generating hard sample that help in training robust encoders).
- CrossXDFL performs significantly better than existing DFL baselines, and competitively with respect to data-driven approaches.

- We presented CrossXDFL, an approach to train photo and sketch encoders for performing Sketch-Based Image Retrieval in a Data Free manner.
- We achieved the above by controlled reconstruction of the train set distributions of pretrained photo and sketch classifiers.
- Specifically, the following were the key components of our model *Class-Alignment* (for paired photo-sketch generation);
 Modality Guidance (for modality specific reconstruction); and *Metric-Agnostic Adversarial Estimation* (for generating hard sample that help in training robust encoders).
- CrossXDFL performs significantly better than existing DFL baselines, and competitively with respect to data-driven approaches.

Data-Free Sketch-Based Image Retrieval

Get in touch: Abhra Chaudhuri ac1151@exeter.ac.uk

https://arxiv.org/abs/2303.07775

https://github.com/abhrac/data-free-sbir