

CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion

Zixiang Zhao^{1,2}, Haowen Bai¹, Jiangshe Zhang¹, Yulun Zhang², Shuang Xu³, Zudi Lin⁴, Radu Timofte^{2,5}, Luc Van Gool²

¹Xi'an Jiaotong University ²Computer Vision Lab, ETH Zurich ³Northwestern Polytechnical University ⁴Harvard University ⁵University of Wurzburg

Infrared and visible image fusion

- Infrared and visible images:
 - ✓ infrared images: discriminative thermal radiations & ignoring illumination.
 - ✓ visible images: textural details & high spatial resolution.

Infrared & Visible images

Fusion image

- Fusion images:
 - ✓ highlight radiation information (brightness and contrast)
 - ✓ detailed texture information (gradients and edges)
 - \checkmark a clear, complete and accurate description of the targets

Challenge & Solution

• Challenges :

- \checkmark interpreting the working mechanism
- ✓ extracting cross-modal features
- \checkmark loss of high-frequency information

- CDDFuse:
 - \checkmark adding correlation restrictions
 - ✓ dual-branch Transformer-CNN exactor
 - \checkmark INN block in detail encoder

CDDFuse: Workflow

$$\mathcal{L}_{total}^{I} = \mathcal{L}_{ir} + \alpha_{1}\mathcal{L}_{vis} + \alpha_{2}\mathcal{L}_{decomp}, \quad \mathcal{L}_{decomp} = \frac{\left(\mathcal{L}_{CC}^{D}\right)^{2}}{\mathcal{L}_{CC}^{B}} = \frac{\left(\mathcal{CC}\left(\Phi_{I}^{D}, \Phi_{V}^{D}\right)\right)^{2}}{\mathcal{CC}\left(\Phi_{I}^{B}, \Phi_{V}^{B}\right) + \epsilon}$$
$$\mathcal{L}_{total}^{II} = \mathcal{L}_{int}^{II} + \alpha_{3}\mathcal{L}_{grad} + \alpha_{4}\mathcal{L}_{decomp},$$

Zamir et al. Restormer: Efficient transformer for high-resolution image restoration. CVPR 2022. Wu et al. Lite transformer with long-short range attention. ICLR 2020. Dinh et al. Density estimation using real NVP. ICLR 2017

CDDFuse: Workflow

$$\mathcal{L}_{total}^{I} = \mathcal{L}_{ir} + \alpha_{1}\mathcal{L}_{vis} + \alpha_{2}\mathcal{L}_{decomp}, \quad \mathcal{L}_{decomp} = \frac{\left(\mathcal{L}_{CC}^{D}\right)^{2}}{\mathcal{L}_{CC}^{B}} = \frac{\left(\mathcal{CC}\left(\Phi_{I}^{D}, \Phi_{V}^{D}\right)\right)^{2}}{\mathcal{CC}\left(\Phi_{I}^{B}, \Phi_{V}^{B}\right) + \epsilon}$$
$$\mathcal{L}_{total}^{II} = \mathcal{L}_{int}^{II} + \alpha_{3}\mathcal{L}_{grad} + \alpha_{4}\mathcal{L}_{decomp},$$

Zamir et al. Restormer: Efficient transformer for high-resolution image restoration. CVPR 2022. Wu et al. Lite transformer with long-short range attention. ICLR 2020. Dinh et al. Density estimation using real NVP. ICLR 2017

CDDFuse: Workflow

$$\begin{aligned} \mathcal{L}_{total}^{I} &= \mathcal{L}_{ir} + \alpha_{1} \mathcal{L}_{vis} + \alpha_{2} \mathcal{L}_{decomp}, \ \mathcal{L}_{decomp} = \frac{\left(\mathcal{L}_{CC}^{D}\right)^{2}}{\mathcal{L}_{CC}^{B}} = \frac{\left(\mathcal{CC}\left(\Phi_{I}^{D}, \Phi_{V}^{D}\right)\right)^{2}}{\mathcal{CC}\left(\Phi_{I}^{B}, \Phi_{V}^{B}\right) + \epsilon} \\ \mathcal{L}_{total}^{II} &= \mathcal{L}_{int}^{II} + \alpha_{3} \mathcal{L}_{grad} + \alpha_{4} \mathcal{L}_{decomp}, \end{aligned}$$

Zamir et al. Restormer: Efficient transformer for high-resolution image restoration. CVPR 2022. Wu et al. Lite transformer with long-short range attention. ICLR 2020. Dinh et al. Density estimation using real NVP. ICLR 2017

Qualitative comparison

Visual comparison for "FLIR 04602" and "00706N" in infrared-visible image fusion.

Qualitative comparison

Visual comparison for "MRI-PET-16" in medical image fusion.

Visualization of the decomposed features.

Quantitative comparison

Quantitative results of the IVF task.

Dataset: MSRS Infrared-Visible Fusion Dataset [57]										
	EN	SD	SF	MI	SCD	VIF	Qbaf	SSIM		
DID [88]	4.27	31.49	10.15	1.61	1.11	0.31	0.20	0.24		
U2F [70]	5.37	25.52	9.07	1.40	1.24	0.54	0.42	0.77		
SDN [82]	5.25	17.35	8.67	1.19	0.99	0.50	0.38	0.72		
RFN [72]	5.56	24.09	11.98	1.30	1.13	0.51	0.43	0.83		
TarD [35]	5.28	25.22	5.98	1.49	0.71	0.42	0.18	0.47		
DeF [32]	6.46	37.63	8.60	<u>2.16</u>	1.35	<u>0.77</u>	<u>0.54</u>	<u>0.94</u>		
ReC [19]	<u>6.61</u>	43.24	9.77	2.16	1.44	0.71	0.50	0.85		
CDDFuse	6.70	43.38	<u>11.56</u>	3.47	1.62	1.05	0.69	1.00		
Dataset: TNO Infrared-Visible Fusion Dataset [59]										
	EN	SD	SF	MI	SCD	VIF	Qbaf	SSIM		
DID [88]	6.97	45.12	12.59	1.70	1.71	0.60	0.40	0.81		
U2F [70]	6.83	34.55	11.52	1.37	1.71	0.58	0.44	0.99		

DID [88]	6.97	45.12	12.59	1.70	1.71	<u>0.60</u>	0.40	0.81
U2F [70]	6.83	34.55	11.52	1.37	1.71	0.58	0.44	0.99
SDN [82]	6.64	32.66	12.05	1.52	1.49	0.56	0.44	1.00
RFN [72]	6.83	34.50	15.71	1.20	1.67	0.51	0.39	0.92
TarD [35]	6.84	<u>45.63</u>	8.68	1.86	1.52	0.53	0.32	0.88
DeF [32]	6.95	38.41	8.21	1.78	1.64	0.60	0.41	0.96
ReC [19]	<u>7.10</u>	44.85	8.73	1.78	1.70	0.57	0.39	0.88
CDDFuse	7.12	46.00	<u>13.15</u>	2.19	1.76	0.77	0.54	1.03

Dataset: RoadScene Infrared-Visible Fusion Dataset [71]											
	EN	SD	SF	MI	SCD	VIF	Qbaf	SSIM			
DID [88]	<u>7.43</u>	51.58	14.66	2.11	1.70	0.58	0.48	0.86			
U2F [70]	7.09	38.12	13.25	1.87	1.70	0.60	<u>0.51</u>	0.97			
SDN [82]	7.14	40.20	13.70	2.21	1.49	0.60	0.51	0.99			
RFN [72]	7.21	41.25	<u>16.19</u>	1.68	1.73	0.54	0.45	0.90			
TarD [35]	7.17	47.44	10.83	2.14	1.55	0.54	0.40	0.88			
DeF [32]	7.23	44.44	10.22	<u>2.25</u>	1.69	0.63	0.48	0.89			
ReC [19]	7.36	<u>52.54</u>	10.78	2.18	<u>1.74</u>	0.59	0.43	0.88			
CDDFuse	7.44	54.67	16.36	2.30	1.81	0.69	0.52	<u>0.98</u>			

Quantitative results of the MIF task.

Dataset: MRI-CT Medical Image Fusion									
	EN	SD	SF	MI	SCD	VIF	$Q^{AB/F}$	SSIM	
TarD [35]	4.75	61.14	28.38	1.94	0.81	0.32	0.35	0.61	
RFN [72]	5.30	52.95	<u>33.42</u>	1.98	0.58	0.33	<u>0.52</u>	0.49	
DeF [32]	4.63	66.38	21.56	<u>2.20</u>	1.12	<u>0.47</u>	0.44	1.29	
ReC [19]	4.41	<u>66.96</u>	20.16	2.03	1.24	0.40	0.42	1.29	
CDDFuse	<u>4.83</u>	88.59	33.83	2.24	1.74	0.50	0.59	1.31	
U2F [70]	4.88	52.98	22.54	2.08	0.75	0.37	0.46	0.49	
SDN [82]	5.02	60.07	29.41	2.14	0.97	0.38	0.47	0.51	
EMF [69]	4.76	<u>72.76</u>	22.56	<u>2.34</u>	1.32	<u>0.56</u>	<u>0.49</u>	<u>1.31</u>	
CDDFuse*	<u>4.88</u>	79.17	38.14	2.61	1.41	0.61	0.68	1.34	
Dataset: MRI-PET Medical Image Fusion									
	EN	SD	SF	MI	SCD	VIF	$Q^{AB/F}$	SSIM	
TarD [35]	3.81	57.65	23.65	1.36	1.46	0.57	<u>0.58</u>	0.68	
RFN [72]	4.77	50.57	29.11	1.53	0.96	0.39	0.52	0.42	
DeF [32]	4.17	64.65	22.35	<u>1.74</u>	1.48	<u>0.58</u>	0.56	<u>1.45</u>	
ReC [19]	3.66	<u>65.25</u>	21.72	1.51	<u>1.49</u>	0.44	0.51	1.40	
CDDFuse	<u>4.24</u>	81.72	28.04	1.87	1.82	0.66	0.65	1.46	
U2F [70]	3.73	57.07	23.27	1.69	1.27	0.40	0.49	1.39	
SDN [82]	3.83	<u>61.40</u>	31.97	1.71	<u>1.40</u>	0.47	0.57	1.46	
EMF [69]	<u>4.21</u>	56.80	26.01	1.82	1.31	0.62	<u>0.67</u>	<u>1.47</u>	
CDDFuse*	4.23	70.73	<u>29.57</u>	2.03	1.69	0.71	0.71	1.49	
	Data	set: MR	I-SPEC	T Medi	ical Ima	ige Fus	ion		
	EN	SD	SF	MI	SCD	VIF	$Q^{AB/F}$	SSIM	
TarD [35]	3.66	53.46	18.50	1.44	0.90	<u>0.64</u>	0.52	0.36	
RFN [72]	4.39	44.01	23.77	1.60	0.72	0.45	<u>0.58</u>	0.37	
DeF [32]	3.81	56.65	15.45	1.80	1.27	0.61	0.56	1.46	
ReC [19]	3.22	<u>60.07</u>	17.40	1.50	<u>1.47</u>	0.46	0.54	1.40	
CDDFuse	<u>3.91</u>	71.82	20.68	1.89	1.92	0.66	0.69	<u>1.44</u>	
U2F [70]	3.47	52.97	19.58	1.68	1.28	0.48	0.57	1.41	
SDN [82]	3.43	49.62	22.20	1.69	1.09	0.55	0.66	1.48	
EMF [69]	<u>3.74</u>	51.93	17.14	1.88	1.12	0.71	0.74	1.49	
CDDFuse*	3.90	58.31	20.87	2.49	1.35	0.97	0.78	<u>1.48</u>	

Quantitative comparison

Results of the multi-modal detection.

Table 3. AP@0.5(%) values for MM detection on M³FD dataset.

	Bus	Car	Lam	Mot	Peo	Tru	mAP@0.5
IR	78.75	88.69	70.17	63.42	80.91	65.77	74.62
VI	78.29	90.73	86.35	69.33	70.53	70.91	77.69
DID	79.65	92.51	84.70	68.72	79.61	68.78	78.99
U2F	79.15	92.29	<u>87.61</u>	66.75	80.67	71.37	79.64
SDN	81.44	92.33	84.14	67.37	79.35	69.29	78.99
RFN	78.15	91.94	84.95	72.80	79.41	69.04	79.38
TarD	81.33	94.76	87.13	69.34	<u>81.52</u>	68.65	80.45
DeF	82.94	92.49	87.78	69.45	80.82	71.44	80.82
ReC	78.92	91.79	87.41	69.34	79.41	69.98	79.48
Ours	<u>82.60</u>	<u>92.54</u>	86.88	<u>71.62</u>	81.60	71.53	81.13

Results of the multi-modal segmentation.

Table 4. IoU(%) values for MM segmentation on MSRS dataset.

Models	Unl	Car	Per	Bik	Cur	CS	GD	CC	Bu	mIOU
VI	90.5	75.6	45.4	59.4	37.2	51.0	46.4	43.5	50.2	55.4
IR	84.7	67.8	56.4	51.8	34.6	39.3	42.2	40.2	48.4	51.7
DID [88]	97.2	78.3	58.7	60.9	36.2	<u>52.9</u>	62.4	44.0	55.7	60.7
U2F [70]	97.5	82.3	<u>63.4</u>	62.6	40.3	52.6	51.9	44.8	59.5	<u>61.7</u>
SDN [82]	97.3	78.4	62.5	61.7	35.7	49.3	52.4	42.2	52.9	59.2
RFN [72]	97.3	78.7	60.6	61.3	36.3	49.4	45.6	45.7	48.0	58.1
TarD [35]	97.1	79.1	55.4	59.0	33.6	49.4	54.9	42.6	53.5	58.3
DeF [32]	<u>97.5</u>	<u>82.6</u>	61.1	<u>62.6</u>	40.4	51.5	48.1	<u>47.9</u>	54.8	60.7
ReC [19]	97.4	81.0	59.9	61.4	<u>41.0</u>	51.3	54.4	47.4	55.9	61.1
Ours	97.7	84.6	64.2	65.1	43.9	53.8	<u>61.7</u>	50.6	<u>57.3</u>	64.3

Take-home message

Image Fusion:

- ✓ Highlight thermal radiation (infrared)
- ✓ Detailed texture information (visible)
- ✓ Clear and accurate representation (fused)

• Challenges :

- ✓ Interpreting the working mechanism
- ✓ Extracting cross-modal features
- ✓ Loss of high-frequency information

Cddfuse:

- ✓ Adding correlation restrictions
- ✓ Dual-branch Transformer-CNN exactor
- \checkmark INN block in detail encoder

Thanks For Listening!

https://github.com/Zhaozixiang1228/GDSR-DCTNet zixiangzhao@stu.xjtu.edu.cn