Poster Overview

N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution Haram Choi¹, Jeongmin Lee², and Jihoon Yang¹

¹Dept. of Computer Science & Engineering, Sogang University ²LG Innotek, Seoul, Republic of Korea

Motivation

- Receptive field of Swin Transformer is too limited.
- SR requires the information of locally adjacent regions to recover degraded pixels.
- The popular Vision Transformer family originates from Transformer of NLP domain.
- N-Gram language model can consider longer spans in text analysis.
- Inspired by such advantage of N-Gram from NLP field, we propose N-Gram context in low-level vision task.

❖ Overall Architecture of NGswin (N-Gram Swin Transformer)

- NSTB (b) contains our proposed N-Gram Window Partitioning method.
- Uni-Gram Embedding reduces feature maps for efficiency.
- · For N-Gram context, sliding-WSA (window self-attention) is used.
- SCDP enables NGswin to maintain an efficient hierarchical structure.
- Our method can overcome the limited receptive fields of Swin Transformers.

(c) N-Gram Window Partition

♦ (b) NSTB (N-Gram Swin Transformer Block)

Definition of N-Gram in an Image

Problem Verification (limited receptive field of Swin Transformer)

- (f), (g): Self-attention in shallower layer is limited within a local window.
- (h): The patterns in the red box and its neighbors differ.
- (e): The obvious distortion in the red box is led by this issue.
- (a), (b), (c), (d): However, our N-Gram context can overcome this issue.

❖ Sliding-WSA

- Example for forward bi-Gram context.
- · For backward bi-Gram context. only the direction of padding is changed from lower-right to upper-left.

❖ SCDP Bottleneck (pixel-Shuffle / Concat / Depth-wise / Point-wise)

(b) Impacts of extra stages and SCDP bottleneck. PSNR / SSIM.

Stages	SCDP	Scale	Mult-Adds	#Params	Urban100	Manga109
extra	w/o		87.98G	997K	32.28 / 0.9298	38.72 / 0.9773
default	w/o	$\times 2$	138.88G	992K	32.48 / 0.9321	38.92 / 0.9776
default	w/		140.41G	998K	32.53 / 0.9324	38.97 / 0.9777
extra	w/o		42.10G	1,006K	28.33 / 0.8562	33.67 / 0.9453
default	w/o	$\times 3$	65.85G	1,001K	28.47 / 0.8596	33.81 / 0.9464
default	w/		66.56G	1,007K	28.52 / 0.8603	33.89 / 0.9470
extra	w/o		23.33G	1,018K	26.22 / 0.7900	30.46 / 0.9090
default	w/o	$\times 4$	36.06G	1,013K	26.38 / 0.7954	30.71 / 0.9121
default	w/		36.44G	1,019K	26.45 / 0.7963	30.80 / 0.9128

* Two Tracks of Paper

- (left): NGswin outperformed previous state-of-the-art efficient Super-Resolution (SR) networks with a more efficient architecture.
- (right): The proposed N-Gram context enhances other Swin Transformer-based networks.

❖ Lightweight SR Results (SwinIR-NG = SwinIR-light + N-Gram)

Method	Year	Scale	Mult-Adds	#Params	S	et5	Se	t14	BSI	D100	Urba	m100	Man	ga109
Method	rear	Scale	Muit-Adds	#Faranis	PSNR	SSIM								
SwinIR-light [38]	2021	$\times 2$	243.7G	910K	38.14	0.9611	33.86	0.9206	32.31	0.9012	32.76	0.9340	39.12	0.9783
ESRT [48]	2022	$\times 2$	191.4G	677K	38.03	0.9600	33.75	0.9184	32.25	0.9001	32.58	0.9318	39.12	0.9774
ELAN-light [79]	2022	$\times 2$	168.4G	582K	38.17	0.9611	33.94	0.9207	32.30	0.9012	32.76	0.9340	39.12	0.9783
DiVANet [7]	2023	$\times 2$	189.0G	902K	38.16	0.9612	33.80	0.9195	32.29	0.9012	32.60	0.9325	39.08	0.9775
SwinIR-NG (ours)	2023	$\times 2$	274.1G	1,181K	38.17	0.9612	33.94	0.9205	32.31	0.9013	32.78	0.9340	39,20	0.9781
SwinIR-light [38]	2021	×3	109.5G	918K	34.62	0.9289	30.54	0.8463	29.20	0.8082	28.66	0.8624	33.98	0.9478
ESRT [48]	2022	×3	96.4G	770K	34.42	0.9268	30.43	0.8433	29.15	0.8063	28.46	0.8574	33.95	0.9455
ELAN-light [79]	2022	$\times 3$	75.7G	590K	34.61	0.9288	30.55	0.8463	29.21	0.8081	28.69	0.8624	34.00	0.9478
DiVANet [7]	2023	×3	89.0G	949K	34.60	0.9285	30.47	0.8447	29.19	0.8073	28.58	0.8603	33.94	0.9468
SwinIR-NG (ours)	2023	×3	114.1G	1,190K	34.64	0.9293	30.58	0.8471	29.24	0.8090	28.75	0.8639	34.22	0.9488
SwinIR-light [38]	2021	×4	61.7G	930K	32.44	0.8976	28.77	0.7858	27.69	0.7406	26.47	0.7980	30.92	0.915
ESRT [48]	2022	$\times 4$	67.7G	751K	32.19	0.8947	28.69	0.7833	27.69	0.7379	26.39	0.7962	30.75	0.9100
ELAN-light [79]	2022	×4	43.2G	601K	32.43	0.8975	28.78	0.7858	27.69	0.7406	26.54	0.7982	30.92	0.9150
DiVANet [7]	2023	$\times 4$	57.0G	939K	32.41	0.8973	28.70	0.7844	27.65	0.7391	26.42	0.7958	30.73	0.9119
SwinIR-NG. (ours)			42.5G	770K	32.44	0.8978	28.80	0.7863	27.70	0.7407	26.47	0.7977	30.97	0.914
SwinIR-NG↓§ (ours)	2023	$\times 4$	42.5G	770K	32,48	0.8979	28.83	0.7868	27.71	0.7411	26.54	0.7998	31.12	0.915
SwinIR-NG (ours)	200000	400	63.0G	1,201K	32,44	0.8980	28.83	0.7870	27.73	0.7418	26.61	0.8010	31.09	0.9161

Visual Comparisons

1 Methodology – Overall Architecture

Core Design

- (1.2) NSTB (N-Gram Swin Transformer Block): N-Gram Context
- (1.3) SCDP Bottleneck

N-Gram Context Motivation

NLP, Text analysis Transformer

Vision, Image Processing **Vision Transformer**

NLP, Text analysis

Vision, Image Processing Swin Transformer

Representation of the National No. 1987
Representation of the National

N-Gram Context in Text Analysis

Sentence1: We use laptop pc for office work.

- \rightarrow N-Gram (forward): (SOS <u>we</u>), (we <u>use</u>), (use <u>laptop</u>), (laptop <u>pc</u>), (pc <u>for</u>), (for <u>office</u>), (office <u>work</u>), (work <u>EOS</u>)
- →N-Gram (backward): (SOS we), (we use), (use laptop), (laptop pc), (pc for), (for office), (office work), (work EOS)
- →N-Gram (bi-directional): (SOS <u>we</u> use), (we <u>use</u> laptop), (use <u>laptop</u> pc), (laptop <u>pc</u> for), (pc <u>for</u> office), (for office work), (office, work, EOS)

*SOS: Start Of Sentence

*EOS: End Of Sentence

Sentence2: Office work makes me tired.

- \rightarrow N-Gram (forward): (SOS <u>office</u>), (office <u>work</u>), (work <u>makes</u>), (makes <u>me</u>), (me <u>tired</u>), (tired <u>EOS</u>)
- \rightarrow N-Gram (backward): (SOS office), (office work), (work makes), (makes me), (me tired), (tired EOS)
- →N-Gram (bi-directional): (SOS <u>office</u> work), (office <u>work</u> makes), (work <u>makes</u> me), (makes <u>me</u> tired), (me <u>tired</u> EOS)
- Character: an alphabet in each word
- Uni-Gram: a word in each sentence
- N-Gram: a word pair neighboring Uni-Gram

Definition of N-Gram in an Image for Swin Transformer

Forward N-Gram

Backward N-Gram

Local windows

Pixels in local window

Uni-Gram local window

N-Gram local windows

source: DIV2K 0196.png

- Character: Alphabet Pixel
- Uni-Gram: Word Window
- N-Gram: Neighbor Words Pair Neighbor Windows Set

Architecture of N-Gram Window Partitioning

(Window Self-Attention)

1.2 Methodology – SCDP Bottleneck

SCDP (pixel <u>Shuffle – Concatenation – Depth-wise conv – Point-wise conv</u> Problem of Standard U-Net Based Bottleneck

- The resolution of bottleneck input is too low.
- Correspondingly, the next layer also takes low-resolution features.
- However, successful super-resolution tasks depend on how many the network handles high-resolution feature maps.
- Nevertheless, a hierarchical U-Net structure is more efficient (Table below).

Table 1. Comparison of computational complexity with state-of-the-art networks. Our NGswin is much more efficient. Mult-Adds is evaluated on a 1280×720 HR image.

Scale	NGswin	SwinIR-light [38] ²	ESRT [48]	DiVANet [7]	ELAN-light [79]
x2	140.4G	243.7G	191.4G	189.0G	168.4G
x3	66.6G	109.5G	96.4G	89.0G	75.7G
x4	36.4G	61.7G	67.7G	57.0G	43.2G

Standard U-Net [1] Architecture

1.2 Methodology – SCDP Bottleneck

SCDP (pixel Shuffle - Concatenation - Depth-wise conv - Point-wise conv

Algorithm 1 SCDP Bottleneck Pseudo-code, PyTorch-like

```
# zi: output list of last NSTBs in three encoder stages
# zs: output of shallow module
x = list()
for i in range(3): # pixel-"S"huffle
    x_{-} = zi[i] + down(zs, i) # before shuffling
    x.append(PixelShuffle(x_, 2**i))
x = torch.cat(x, dim=-1) # "C"oncatenation
x = Rearrange(x, '(h w) d \rightarrow d h w') # ignores batch
x = GELU(depth_wise(x)) # "D"epth-wise convolution
x = Rearrange(x, 'dhw -> (hw) d')
x = LayerNorm(point_wise(x)) # "P"oint-wise projection
def down(z, exp): # downsizing zs
    z = Rearrange(z, '(h w) d \rightarrow d h w')
    for e in range(exp): # iterative max-poolings
        z = MaxPool2D(z) # 2x2 pool
    z = LeakyReLU(z)
    return Rearrange(z, 'd h w -> (h w) d')
```

Table 6. Ablation study on extra stages and SCDP bottleneck.

(a) The specifications of models with different stages. dep.: # of NSTBs / res.: training input resolution. The total number of NSTBs is kept as 20.

Stages	encoder1	encoder2	encoder3	encoder4	decoder1	decoder2
Stages	dep. / res.	dep. / res.	dep. / res.	dep. / res.	dep. / res.	dep. / res.
extra	4 / 64×64	4/32×32	4 / 16×16	4 / 8×8	2/32×32	2 / 64×64
default	6 / 64×64	$4/32\times32$	4/16×16	-/-	6 / 64×64	-/-

(b) Impacts of extra stages and SCDP bottleneck. PSNR / SSIM.

Stages	SCDP	Scale	Mult-Adds	#Params	Urban100	Manga109
extra	w/o		87.98G	997K	32.28 / 0.9298	38.72 / 0.9773
default	w/o	$\times 2$	138.88G	992K	32.48 / 0.9321	38.92 / 0.9776
default	w/		140.41G	998K	32.53 / 0.9324	38.97 / 0.9777
extra	w/o		42.10G	1,006K	28.33 / 0.8562	33.67 / 0.9453
default	w/o	$\times 3$	65.85G	1,001K	28.47 / 0.8596	33.81 / 0.9464
default	w/		66.56G	1,007K	28.52 / 0.8603	33.89 / 0.9470
extra	w/o		23.33G	1,018K	26.22 / 0.7900	30.46 / 0.9090
default	w/o	$\times 4$	36.06G	1,013K	26.38 / 0.7954	30.71 / 0.9121
default	w/		36.44G	1,019K	26.45 / 0.7963	30.80 / 0.9128

Main Results

Method	Training	Scale	Mult-Adds	#Params	S	et5	Se	t14	BSI	2100	Urba	ın100	Man	ga109
	Dataset				PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
EDSR-baseline [28]	D2K	$\times 2$	316.3G	1,370K	37.99	0.9604	33.57	0.9175	32.16	0.8994	31.98	0.9272	38.54	0.9769
MemNet [50]	291	$\times 2$	2,662.4G	677K	37.78	0.9597	33.28	0.9142	32.08	0.8978	31.31	0.9195	-	-
CARN [2]	D2K+291	$\times 2$	222.8G	1,592K	37.76	0.9590	33.52	0.9166	32.09	0.8978	31.92	0.9256	38.36	0.9765
IMDN [23]	D2K	$\times 2$	158.8G	694K	38.00	0.9605	33.63	0.9177	32.19	0.8996	32.17	0.9283	38.88	0.9774
LatticeNet [37]	D2K	$\times 2$	169.5G	756K	<u>38.06</u>	0.9607	33.70	0.9187	32.20	0.8999	32.25	0.9288	38.94	0.9774
RFDN-L [30]	D2K	$\times 2$	145.8G	626K	38.08	0.9606	33.67	0.9190	32.18	0.8996	32.24	0.9290	38.95	0.9773
SRPN-Lite [65]	DF2K	$\times 2$	139.9G	609K	38.10	0.9608	<u>33.70</u>	0.9189	<u>32.25</u>	0.9005	32.26	0.9294	-	-
HNCT [16]	D2K	$\times 2$	82.4G	357K	38.08	0.9608	33.65	0.9182	32.22	0.9001	32.22	0.9294	38.87	0.9774
FMEN [15]	DF2K	$\times 2$	172.0G	748K	38.10	0.9609	33.75	0.9192	32.26	0.9007	32.41	0.9311	38.95	0.9778
NGswin (ours)	D2K	$\times 2$	140.4G	998K	38.05	0.9610	33.79	0.9199	32.27	0.9008	32.53	0.9324	38.97	0.9777
EDSR-baseline [28]	D2K	$\times 3$	160.2G	1,555K	34.37	0.9270	30.28	0.8417	29.09	0.8052	28.15	0.8527	33.45	0.9439
MemNet [50]	219	$\times 3$	2,662.4G	677K	34.09	0.9248	30.00	0.8350	28.96	0.8001	27.56	0.8376	-	-
CARN [2]	D2K+291	$\times 3$	118.8G	1,592K	34.29	0.9255	30.29	0.8407	29.06	0.8034	28.06	0.8493	33.50	0.9440
IMDN [23]	D2K	$\times 3$	71.5G	703K	34.36	0.9270	30.32	0.8417	29.09	0.8046	28.17	0.8519	33.61	0.9445
LatticeNet [37]	D2K	$\times 3$	76.3G	765K	34.40	0.9272	30.32	0.8416	29.10	0.8049	28.19	0.8513	33.63	0.9442
RFDN-L [30]	D2K	$\times 3$	65.6G	633K	34.47	0.9280	30.35	0.8421	29.11	0.8053	28.32	0.8547	33.78	0.9458
SRPN-Lite [65]	DF2K	$\times 3$	62.7G	615K	34.47	0.9276	30.38	0.8425	<u>29.16</u>	0.8061	28.22	0.8534	-	-
HNCT [16]	D2K	$\times 3$	37.8G	363K	34.47	0.9275	30.44	0.8439	29.15	0.8067	28.28	0.8557	33.81	0.9459
FMEN [15]	DF2K	$\times 3$	77.2G	757K	<u>34.45</u>	0.9275	<u>30.40</u>	0.8435	29.17	0.8063	28.33	0.8562	33.86	0.9462
NGswin (ours)	D2K	$\times 3$	66.6G	1,007K	34.52	0.9282	30.53	0.8456	29.19	0.8078	28.52	0.8603	33.89	0.9470
EDSR-baseline [28]	D2K	×4	114.0G	1,518K	32.09	0.8938	28.58	0.7813	27.57	0.7357	26.04	0.7849	30.35	0.9067
MemNet [50]	291	$\times 4$	2,662.4G	677K	31.74	0.8893	28.26	0.7723	27.40	0.7281	25.50	0.7630	-	-
CARN [2]	D2K+291	$\times 4$	90.9G	1,592K	32.13	0.8937	28.60	0.7806	27.58	0.7349	26.07	0.7837	30.47	0.9084
IMDN [23]	D2K	$\times 4$	40.9G	715K	32.21	0.8948	28.58	0.7811	27.56	0.7353	26.04	0.7838	30.45	0.9075
LatticeNet [37]	D2K	$\times 4$	43.6G	777K	32.18	0.8943	28.61	0.7812	27.57	0.7355	26.14	0.7844	30.54	0.9075
RFDN-L [30]	D2K	$\times 4$	37.4G	643K	32.28	0.8957	28.61	0.7818	<u>27.58</u>	0.7363	26.20	0.7883	30.61	0.9096
SRPN-Lite [65]	DF2K	$\times 4$	35.8G	623K	32.24	0.8958	28.69	0.7836	27.63	0.7373	26.16	0.7875	-	-
HNCT [16]	D2K	$\times 4$	22.0G	373K	32.31	0.8957	28.71	0.7834	27.63	0.7381	<u>26.20</u>	<u>0.7896</u>	30.70	0.9112
FMEN [15]	DF2K	$\times 4$	44.2G	769K	32.24	0.8955	28.70	0.7839	27.63	0.7379	26.28	0.7908	30.70	0.9107
NGswin (ours)	D2K	×4	36.4G	1,019K	32.33	0.8963	28.78	0.7859	27.66	0.7396	26.45	0.7963	30.80	0.9128

139	Method	Year	Scale	Mult-Adds	#Params	S	et5	Se	t14	BSI	0100	Urba	an 100	Man	ga109
139	Method	Tear	Scale	Muit-Auds	#Falallis	PSNR	SSIM								
140	SwinIR-light [27]	2021	$\times 2$	243.7G	910K	38.14	0.9611	33.86	0.9206	32.31	0.9012	32.76	0.9340	39.12	0.9783
45	ESRT [35]	2022	$\times 2$	191.4G	677K	38.03	0.9600	33.75	0.9184	32.25	0.9001	32.58	0.9318	39.12	0.9774
42	ELAN-light [63]	2022	$\times 2$	168.4G	582K	38.17	0.9611	33.94	0.9207	32.30	0.9012	32.76	0.9340	39.12	0.9783
158	DiVANet [6]	2023	$\times 2$	189.0G	902K	38.16	0.9612	33.80	0.9195	32.29	0.9012	32.60	0.9325	39.08	0.9775
	SwinIR-NG (ours)	2023	$\times 2$	274.1G	1,181K	38.17	0.9612	33.94	0.9205	32.31	0.9013	32.78	0.9340	39.20	0.9781
59	SwinIR-light [27]	2021	$\times 3$	109.5G	918K	34.62	0.9289	30.54	0.8463	29.20	0.8082	28.66	0.8624	33.98	0.9478
62	ESRT [35]	2022	$\times 3$	96.4G	770K	34.42	0.9268	30.43	0.8433	29.15	0.8063	28.46	0.8574	33.95	0.9455
170	ELAN-light [63]	2022	$\times 3$	75.7G	590K	34.61	0.9288	30.55	0.8463	29.21	0.8081	28.69	0.8624	34.00	0.9478
)67	DiVANet [6]	2023	$\times 3$	89.0G	949K	34.60	0.9285	30.47	0.8447	29.19	0.8073	28.58	0.8603	33.94	0.9468
	SwinIR-NG (ours)	2023	$\times 3$	114.1G	1,190K	34.64	0.9293	30.58	0.8471	29.24	0.8090	28.75	0.8639	34.22	0.9488
084	SwinIR-light [27]	2021	$\times 4$	61.7G	930K	32.44	0.8976	28.77	0.7858	27.69	0.7406	26.47	0.7980	30.92	0.9151
)75	ESRT [35]	2022	$\times 4$	67.7G	751K	32.19	0.8947	28.69	0.7833	27.69	0.7379	26.39	0.7962	30.75	0.9100
96	ELAN-light [63]	2022	$\times 4$	43.2G	601K	32.43	0.8975	28.78	0.7858	27.69	0.7406	26.54	0.7982	30.92	0.9150
,,,	DiVANet [6]	2023	$\times 4$	57.0G	939K	32.41	0.8973	28.70	0.7844	27.65	0.7391	26.42	0.7958	30.73	0.9119
12	SwinIR-NG↓ (ours)			42.5G	770K	32.44	0.8978	28.80	0.7863	27.70	0.7407	26.47	0.7977	30.97	0.9147
07	SwinIR-NG↓§ (ours)	2023	$\times 4$	42.5G	770K	32.48	0.8979	28.83	0.7868	27.71	0.7411	26.54	0.7998	31.12	0.9158
128	SwinIR-NG (ours)			63.0G	1,201K	32.44	0.8980	28.83	0.7870	27.73	0.7418	26.61	0.8010	31.09	0.9161

1st Track: Efficient Super-Resolution (NGswin)

2nd Track: Lightweight Super-Resolution (SwinIR-NG = SwinIR-light + N-Gram)

Main Results

Ablations

(a) N-Gram context (Tab. 4).

NGswin without vs. with N-Gram

N-Gram	Scale	Mult-Adds	#Params	Set5	Set14	BSD100	Urban100	Manga109
w/o	$\times 2$	138.20G	750K	38.05 / 0.9609	33.70 / 0.9194	32.25 / 0.9006	32.39 / 0.9304	38.86 / 0.9775
w/	\ \^2	140.41G	998K	38.05 / 0.9610	33.79 / 0.9199	32.27 / 0.9008	32.53 / 0.9324	38.97 / 0.9777
w/o	×3	65.53G	759K	34.53 / 0.9281	30.48 / 0.8451	29.15 / 0.8073	28.37 / 0.8573	33.81 / 0.9464
w/	_ ^3	66.56G	1,007K	34.52 / 0.9282	30.53 / 0.8456	29.19 / 0.8078	28.52 / 0.8603	33.89 / 0.9470
w/o		35.89G	771K	32.34 / 0.8963	28.70 / 0.7844	27.63 / 0.7390	26.25 / 0.7918	30.70 / 0.9123
w/o (channel up)	V.1	53.71G	1,189K	32.37 / 0.8973	28.75 / 0.7854	27.65 / 0.7396	26.28 / 0.7927	30.73 / 0.9129
w/o (depth up)	$\times 4$	47.88G	1,061K	32.40 / 0.8967	28.75 / 0.7853	27.66 / 0.7398	26.37 / 0.7946	30.78 / 0.9133
w/		36.44G	1,019K	32.33 / 0.8963	28.78 / 0.7859	27.66 / 0.7396	26.45 / 0.7963	30.80 / 0.9128

HNCT vs. HNCT-NG

N-Gram	Scale	Mult-Adds	#Params	Set5	Set14	BSD100	Urban100	Manga109
w/o	×2	82.39G	357K	38.08 / 0.9608	33.65 / 0.9182	32.22 / 0.9001	32.22 / 0.9294	38.87 / 0.9774
w/	X 2	83.19G	424K	38.10 / 0.9610	33.64 / 0.9195	32.25 / 0.9006	32.35 / 0.9306	38.94 / 0.9774
w/o	×3	37.78G	363K	34.47 / 0.9275	30.44 / 0.8439	29.15 / 0.8067	28.28 / 0.8557	33.81 / 0.9459
w/	^3	38.14G	431K	34.48 / 0.9280	30.48 / 0.8450	29.16 / 0.8074	28.38 / 0.8573	33.81 / 0.9464
w/o	×4	22.01G	373K	32.31 / 0.8957	28.71 / 0.7834	27.63 / 0.7381	26.20 / 0.7896	30.70 / 0.9112
w/	×4	22.21G	440K	32.32 / 0.8960	28.72 / 0.7846	27.65 / 0.7391	26.23 / 0.7912	30.71 / 0.9114

(b) N-Gram directions and interaction (Tab. 5). The second best results are in <u>underline</u>.

Direction	Type	Mult-Adds	#Params	Set5	Set14	BSD100	Urban100	Manga109
1	WSA	152.41G	1,238,056	38.05 / 0.9610	33.78 / 0.9198	<u>32.26</u> / 0.9006	32.54 / 0.9322	38.90 / 0.9777
4	WSA	139.56G	935,272	38.07 / 0.9609	33.76 / 0.9197	32.25 / <u>0.9007</u>	32.52 / 0.9317	38.92 / 0.9776
1	CNN	139.80G	1,327,528	38.04 / 0.9610	33.77 / 0.9197	32.25 / 0.9005	32.45 / 0.9316	38.86 / 0.9775
2	CNN	139.38G	998,568	38.04 / 0.9610	33.83 / 0.9203	<u>32.26</u> / <u>0.9007</u>	32.54 / 0.9321	38.90 / 0.9776
4	CNN	139.17G	936,488	38.02 / 0.9609	33.77 / 0.9178	<u>32.26</u> / 0.9006	32.52 / 0.9320	38.93 / 0.9777
2	WSA	140.41G	998,384	38.05 / 0.9610	33.79 / 0.9199	32.27 / 0.9008	32.53 / 0.9324	38.97 / 0.9777

LR (bicubic)

LatticeNet

BSD100 × 3 148026

Set14 × 4 barbara

 $Urban100 \times 3 img 092$

3 Results Visual Results (w/o N-Gram vs. w/ N-Gram)

Machine Learning Laboratory

LR(bicubic)

Urban $100 \times 3 \text{ img } 092$

LR(bicubic)

SwinIR-light w/o N-Gram

Thank You