Poster Overview

a

Sogang University
Machine Learning Laboratory

N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution
Haram Choi ${ }^{1}$, Jeongmin Lee ${ }^{2}$, and Jihoon Yang ${ }^{1}$
${ }^{1}$ Dept. of Computer Science \& Engineering, Sogang University ${ }^{2}$ LG Innotek, Seoul, Republic of Korea

* Motivation

- Receptive field of Swin Transformer is too limited.
- SR requires the information of locally adjacent regions to recover degraded pixels.
- The popular Vision Transformer family originates from Transformer of NLP domain.
- N -Gram language model can consider longer spans in text analysis.
- Inspired by such advantage of N-Gram from NLP field, we propose N-Gram context in low-level vision task.
* Overall Architecture of NGswin (N-Gram Swin Transformer)

NSTB (b) contains our proposed N Gram Window Partitioning method
Uni-Gram Embedding reduces feature maps for efficiency.

- For N-Gram context, sliding-WSA (window self-attention) is used. SCDP enables NGswin to maintain an efficient hierarchical structure.
Our method can overcome the limited receptive fields of Swin Transformers.

(c) N-Gram Window Partition
(b) NSTB (N-Gram Swin Transformer Block)
* Definition of N -Gram in an Image

* Problem Verification (limited receptive field of Swin Transformer)

(f), (g): Self-attention in shallower layer is limited within a local window.
- (h): The patterns in the red box and its neighbors differ.
(e): The obvious distortion in the red box is led by this issue
- (a), (b), (c), (d): However, our N-Gram context can overcome this issue.

- Sliding-WSA

- Example for forward bi-Gram context.
- For backward bi-Gram context only the direction of padding is changed from lower-right to upper-left.
* Two Tracks of Paper
* SCDP Bottleneck (pixel-Shuffle / Concat / Depth-wise / Point-wise) (b) Impacts of extra stages and SCDP bottleneck. PSNR / SSIM.

Stages	SCDP	Scale	Mult-Adds	\#Params	Urban 100	Mangal09
extra	w/o		87.98 G	997K	$32.28 / 0.9298$	38.72/0.9773
ault	w/o	$\times 2$	88 G	992K	$32.48 / 0.9321$	38.92/0.9776
default	w/		140.41G	998K	32.53/0.9324	38.97/0.9777
extra	w/o		${ }^{42.10 \mathrm{G}}$	1,006K	28.33/0.8562	33.67/0.0453
defautt	w/o	$\times 3$	65.85 G	1,001K	$28.47 / 0.8596$	33.81/0.9464
default	w/		66.56G	1,007K	28.52/0.8603	$33.89 / 0.9470$
	w/o		23.33 G	1,018K	26.22/0.7900	30.46/0.9090
default	w/o	$\times 4$	36.06G	1,013K	26.38/0.7954	30.71/0.9121
fault	w/		36.44G	1,019K	26.45/0.79	30.80/0.9128

- (left): NGswin outperformed previous state-of-the-art efficient Super-Resolution (SR) networks with a more efficient architecture.
- (right): The proposed N-Gram context enhances other Swin Transformer-based networks.
* Lightweight SR Results (SwinlR-NG = SwinlR-light + N-Gram)

thod	Year	Scale	11-Ads	\#Params	$\stackrel{\text { PSNR }}{ }$		PSN	SSIM	${ }_{\text {BSSDILOO }}^{\text {PSNR }}$		$\frac{\text { Unani00 }}{\text { PSNR }}$ SSIM		${ }_{\text {S }}^{\text {Psamg }}$	${ }_{\text {sealos }}^{\text {ssim }}$
	202	$\times 2$												
ESRT [ELAN-light [9$]$	${ }_{202}^{2022}$	${ }_{\times 2}^{\times 2}$	${ }_{\substack{168,46}}^{19.46}$	${ }_{582 \mathrm{~K}}^{67 \mathrm{~K}}$	$\begin{aligned} & 38.03 \\ & 38.17 \\ & 38.0 \end{aligned}$	0.9660 0.9611	${ }_{3}^{33,75} \mathbf{3 3 , 9 4}$	-	32.25 32.30	${ }^{\text {a }}$	${ }^{32288}$	(0.334	-	
Sinev	2	${ }^{\times 2}$	27	,	${ }_{38,16}^{3.17}$	${ }^{0.9612}$	33.80	0.995	32.29	0.0012	32.60	0.9325		,
Swink-ight ${ }^{\text {a }}$								0.8463						
krtel	2022	$\times 3$	${ }^{96}$	770k	${ }^{34.42}$	${ }^{0.92688}$	30.43	0.8433	29.15	0.8063	28.46	0.8574	33.95	
	2023	${ }^{\times 3}$			${ }_{3}^{34.60}$		${ }_{\substack{30.55 \\ 30.45}}$	${ }_{\substack{0.8463 \\ 0.847}}^{0.8}$	${ }_{29,19}^{29,21}$		${ }_{\text {28, }}^{28.69}$			
Swink-NG (ours)	2023	$\times 3$	${ }^{114.16}$	1,190\%	34.64	0.92	30.58	0.84	29.21	0.8	28.75	0.8839	4.22	
inllk-ligh	2021							078						
	${ }_{2022}^{2022}$	${ }_{\times 4} \times$	667.7 4326	$\underset{\substack{751 \mathrm{~K} \\ 601 \mathrm{~K}}}{ }$	${ }_{3}^{32.19}$	$\substack{0.8897 \\ 0.8975}_{\substack{\text { a }}}$	${ }_{28.78}^{28.69}$	${ }_{\substack{0.78838 \\ 0.788}}^{0 .}$	${ }_{27,69}^{27.69}$	${ }_{\substack{0.7379 \\ 0.746}}^{0.0}$	${ }_{26.54}^{26.39}$	${ }_{\substack{0.7982 \\ 0.782}}^{0.9}$	3075	${ }_{\substack{0.99100 \\ 0.950}}$
Elivaneli]	${ }_{2023}^{2022}$	${ }_{\times 4}$	${ }^{27.06}$	${ }_{\text {cole }}$	${ }_{32,1}$	0.8975	28.78	0.7888	27.5	0.74	26.42		${ }^{30.73}$	
Swinle NCL l (oui		${ }^{\text {x } 4}$			${ }^{32,44}$	${ }^{0.8978}$	${ }^{28.80}$	${ }^{0.7863}$	${ }^{2770}$	0.7487	${ }^{26,47}$	${ }^{0.7977}$	30.97	
		${ }^{\times 4}$												

* Visual Comparisons

1 Methodology - Overall Architecture

SOGANG UNIVERSITY
Machine Learning Laboratory

Core Design

- (1.2) NSTB (N-Gram Swin Transformer Block): N-Gram Context
- (1.3) SCDP Bottleneck

1.1 Methodology - N-Gram Context

N-Gram Context Motivation

N-Gram Context

1.1 Methodology - N-Gram Context

N-Gram Context in Text Analysis

Sentence1: We use laptop pc for office work.

\rightarrow N-Gram (forward): (SOS we), (we use), (use laptop), (laptop pc), (pc for), (for office), (office work), (work EOS)
\rightarrow N-Gram (backward): (SOS we), (we use), (use laptop), (laptop pc), (pc for), (for office), (office work), (work EOS)
$\rightarrow \mathrm{N}$-Gram (bi-directional): (SOS we use), (we use laptop), (use laptop pc), (laptop pc for), (pc for office), (for office work), (office, work, EOS)

> *SOS: Start Of Sentence
> *EOS: End Of Sentence

Sentence2: Office work makes me tired.
\rightarrow N-Gram (forward): (SOS office), (office work), (work makes), (makes me), (me tired), (tired EOS)
$\rightarrow \mathrm{N}-\mathrm{Gram}$ (backward): (SOS office), (office work), (work makes), (makes me), (me tired), (tired EOS)
$\rightarrow \mathrm{N}$-Gram (bi-directional): (SOS office work), (office work makes), (work makes me), (makes me tired), (me tired EOS)

- Character: an alphabet in each word
- Uni-Gram: a word in each sentence
- N-Gram: a word pair neighboring Uni-Gram
1.1 Methodology - N-Gram Context

Definition of N-Gram in an Image for Swin Transformer

Backward N-Gram

Local windows

Pixels in local window
\square Uni-Gram local window
N-Gram local windows
 source: DIV2K 0196.png

Forward N-Gram

- Character: Alphabet - Pixel
- Uni-Gram: Word - Window
- N-Gram: Neighbor Words Pair - Neighbor Windows Set

1.1 Methodology - N-Gram Context

Architecture of N -Gram Window Partitioning

1.2 Methodology - SCDP Bottleneck

SCDP (pixel Shuffle - Concatenation - Depth-wise conv - Point-wise conv

Problem of Standard U-Net Based Bottleneck

- The resolution of bottleneck input is too low.
- Correspondingly, the next layer also takes low-resolution features.
- However, successful super-resolution tasks depend on how many the network handles high-resolution feature maps.
- Nevertheless, a hierarchical U-Net structure is more efficient (Table below).

Table 1. Comparison of computational complexity with state-of-the-art networks. Our NGswin is much more efficient. Mult-Adds is evaluated on a $1280 \times 720 \mathrm{HR}$ image.

Standard U-Net [1] Architecture

Scale	NGswin	SwinIR-light [38] ${ }^{2}$	ESRT [48]	DiVANet [7]	ELAN-light [79]
x2	140.4G	243.7 G	191.4 G	189.0 G	168.4 G
x3	$\mathbf{6 6 . 6 G}$	109.5 G	96.4 G	89.0 G	75.7 G
x4	$\mathbf{3 6 . 4 G}$	61.7 G	67.7 G	57.0 G	43.2 G

1.2 Methodology - SCDP Bottleneck

SOGANG UNIVERSITY
Machine Learning Laboratory

```
Algorithm 1 SCDP Bottleneck Pseudo-code, PyTorch-like
# zi: output list of last NSTBs in three encoder stages
# zs: output of shallow module
x = list()
for i in range(3): # pixel-"S"huffle
    x_ = zi[i] + down(zs, i) # before shuffling
    x.append(PixelShuffle(x_, 2**i))
x = torch.cat (x, dim=-1) # "C"oncatenation
x = Rearrange(x, ' (h w) d -> d h w') # ignores batch
x = GELU(depth_wise(x)) # "D"epth-wise convolution
x = Rearrange (x, 'd h w -> (h w) d')
x = LayerNorm(point_wise(x)) # "P"oint-wise projection
def down(z, exp): # downsizing zs
    z = Rearrange(z, '(h w) d -> d h w')
    for e in range(exp): # iterative max-poolings
        z = MaxPool2D(z) # 2x2 pool
    z = LeakyReLU(z)
    return Rearrange(z, 'd h w -> (h w) d')
```

Table 6. Ablation study on extra stages and SCDP bottleneck.
(a) The specifications of models with different stages. dep.: \# of NSTBs / res.: training input resolution. The total number of NSTBs is kept as 20.

Stages	encoder1	encoder2	encoder3	encoder4	decoder1	decoder2
	dep. / res.					
extra	$4 / 64 \times 64$	$4 / 32 \times 32$	$4 / 16 \times 16$	$4 / 8 \times 8$	$2 / 32 \times 32$	$2 / 64 \times 64$
default	$\mathbf{6 / 6 4} \times \mathbf{6 4}$	$\mathbf{4 / 3 2} \times \mathbf{3 2}$	$\mathbf{4 / \mathbf { 1 6 } \times \mathbf { 1 6 }}$	$-/-$	$\mathbf{6 / 6 4} \times \mathbf{6 4}$	$-/ \mathbf{-}$

(b) Impacts of extra stages and SCDP bottleneck. PSNR / SSIM.

Stages	SCDP	Scale	Mult-Adds	\#Params	Urban 100	Manga109
extra	w / o		87.98 G	997 K	$32.28 / 0.9298$	$38.72 / 0.9773$
default	w / o	$\times 2$	138.88 G	992 K	$32.48 / 0.9321$	$38.92 / 0.9776$
default	$\boldsymbol{w} /$		$\mathbf{1 4 0 . 4 1 G}$	$\mathbf{9 9 8 K}$	$\mathbf{3 2 . 5 3 / 0 . 9 3 2 4}$	$\mathbf{3 8 . 9 7} / \mathbf{0 . 9 7 7 7}$
extra	w / o		42.10 G	$1,006 \mathrm{~K}$	$28.33 / 0.8562$	$33.67 / 0.9453$
default	w / o	$\times 3$	65.85 G	$1,001 \mathrm{~K}$	$28.47 / 0.8596$	$33.81 / 0.9464$
default	$\boldsymbol{w} /$		$\mathbf{6 6 . 5 6 G}$	$\mathbf{1 , 0 0 7 \mathrm { K }}$	$\mathbf{2 8 . 5 2 / 0 . 8 6 0 3}$	$\mathbf{3 3 . 8 9} / \mathbf{0 . 9 4 7 0}$
extra	w / o		23.33 G	$1,018 \mathrm{~K}$	$26.22 / 0.7900$	$30.46 / 0.9090$
default	w / o	$\times 4$	36.06 G	$1,013 \mathrm{~K}$	$26.38 / 0.7954$	$30.71 / 0.9121$
default	$\boldsymbol{w} /$		$\mathbf{3 6 . 4 4 G}$	$\mathbf{1 , 0 1 9 K}$	$\mathbf{2 6 . 4 5 / 0 . 7 9 6 3}$	$\mathbf{3 0 . 8 0} / \mathbf{0 . 9 1 2 8}$

3 Results

SOGANG UNIVERSITY
Machine Learning Laboratory

Main Results

Method	Training Dataset	Scale	Mult-Adds	\#Params	Set5		Set14		BSD100		Urban 100		Mangal09	
					PSNR	SSIM								
EDSR-baseline [28]	D2K	$\times 2$	316.3G	1,370K	37.99	0.9604	33.57	0.9175	32.16	0.8994	31.98	0.9272	38.54	0.9769
MemNet [50]	291	$\times 2$	2,662.4G	677K	37.78	0.9597	33.28	0.9142	32.08	0.8978	31.31	0.9195		
CARN [2]	D2K+291	$\times 2$	222.8 G	1,592K	37.76	0.9590	33.52	0.9166	32.09	0.8978	31.92	0.9256	38.36	0.9765
IMDN [23]	D2K	$\times 2$	158.8 G	694K	38.00	0.9605	33.63	0.9177	32.19	0.8996	32.17	0.9283	38.88	0.9774
LatticeNet [37]	D2K	$\times 2$	169.5 G	756K	38.06	0.9607	33.70	0.9187	32.20	0.8999	32.25	0.9288	38.94	$\underline{0.9774}$
RFDN-L [30]	D2K	$\times 2$	145.8G	626 K	38.08	0.9606	33.67	0.9190	32.18	0.8996	32.24	0.9290	38.95	0.9773
SRPN-Lite [65]	DF2K	$\times 2$	139.9 G	609K	38.10	0.9608	33.70	0.9189	32.25	0.9005	32.26	0.9294		
HNCT [16]	D2K	$\times 2$	82.4 G	357K	38.08	0.9608	33.65	0.9182	32.22	0.9001	32.22	0.9294	38.87	0.9774
FMEN [15]	DF2K	$\times 2$	172.0 G	748K	38.10	0.9609	33.75	0.9192	32.26	0.9007	32.41	0.9311	38.95	0.9778
NGswin (ours)	D2K	$\times 2$	140.4G	998 K	38.05	0.9610	33.79	0.9199	32.27	0.9008	32.53	0.9324	38.97	0.9777
EDSR-baseline [28]	D2K	$\times 3$	160.2G	1,555K	34.37	9270	30.28	0.8417	29.09	0.8052	28.15	8527	33.45	0.9439
MemNet [50]	219	$\times 3$	2,662.4G	77K	4.09	9248	30.00	. 8350	28.96	0.8001	27.56	. 8376		
CARN [2]	D2K+291	$\times 3$	118.8 G	1,592K	34.29	0.9255	30.29	0.8407	29.06	0.8034	28.06	0.8493	33.50	0.9440
IMDN [23]	D2K	$\times 3$	71.5G	703K	34.36	0.9270	30.32	0.8417	29.09	0.8046	28.17	0.8519	33.61	0.9445
LatticeNet [37]	D2K	$\times 3$	76.3G	765K	34.40	0.9272	30.32	0.8416	29.10	0.8049	28.19	0.8513	33.63	0.9442
RFDN-L [30]	K	$\times 3$	65.6G	33K	34.47	928	30.35	0.842	29.11	0.8053	28.32	0.8547	33.78	0.9458
SRPN-Lite [65]	DF2K	$\times 3$	62.7 G	615 K	34.47	0.9276	30.38	0.8425	29.16	0.8061	28.22	0.8534		
HNCT [16]	D2K	$\times 3$	37.8 G	363 K	34.47	0.9275	30.44	0.8439	29.15	0.8067	28.28	0.8557	33.81	0.9459
FMEN [15]	DF2K	$\times 3$	77.2G	757K	34.45	0.9275	30.40	0.8435	29.17	0.8063	28.33	0.8562	33.86	0.9462
NGswin (ours)	D2K	$\times 3$	66.6G	1,007K	34.52	0.9282	30.53	0.8456	29.19	0.8078	28.5	0.86	33.8	0.947
EDSR-baseline [28]	D2K	$\times 4$	114.0 G	1,518K	32.09	0.8	28.58	0.7813	27.57	0.7357	26.04	0.7849	30.35	0.9067
MemNet [50]	291	$\times 4$	2,662.4G	677K	31.74	0.889	28.26	0.7723	27.40	0.7281	25.50	0.7630		
CARN [2]	D2K+291	$\times 4$	90.9G	1,592K	32.13	0.8937	28.60	0.7806	27.58	0.7349	26.07	0.7837	30.47	0.9084
IMDN [23]	D2K	$\times 4$	40.9G	715K	32.21	0.8948	28.58	0.7811	27.56	0.7353	26.04	0.7838	30.45	0.9075
LatticeNet [37]	D2K	$\times 4$	43.6G	777K	32.18	0.8943	28.61	0.7812	27.57	0.7355	26.14	0.7844	30.54	0.9075
RFDN-L [30]	D2K	$\times 4$	37.4 G	643 K	32.28	0.8957	28.61	0.7818	27.58	0.7363	$\underline{26.20}$	0.7883	30.61	0.9096
SRPN-Lite [65]	DF2K	$\times 4$	35.8G	623 K	32.24	0.8958	28.69	0.7836	27.63	0.7373	26.16	0.7875		
HNCT [16]	D2K	$\times 4$	22.0 G	373K	32.31	0.8957	28.71	0.7834	27.63	0.7381	$\underline{26.20}$	$\underline{0.7896}$	30.70	0.9112
FMEN [[15]	DF2K	$\times 4$	44.2G	769 K	32.24	0.8955	28.70	0.7839	27.63	0.7379	26.28	0.7908	30.70	0.9107
NGswin (ours)	D2K	$\times 4$	36.4G	1,019K	32.33	0.8963	28.78	0.7859	27.66	0.7396	26.45	0.7963	30.80	0.9128

1st Track: Efficient Super-Resolution (NGswin)

Method	Year	Scale	Mult-Adds	\#Params	Set5		Set14		BSD100		Urban 100		Manga109	
					PSNR	SSIM								
SwinIR-light [27]	2021	$\times 2$	243.7 G	910 K	38.14	0.9611	33.86	0.9206	32.31	0.9012	32.76	0.9340	39.12	0.978
ESRT [35]	2022	$\times 2$	191.4G	677K	38.03	0.9600	33.75	0.9184	32.25	0.9001	32.58	0.9318	39.12	0.9774
ELAN-light [63]	2022	$\times 2$	168.4G	582 K	38.17	0.9611	33.94	0.9207	32.30	0.9012	32.76	0.9340	39.12	0.9783
DiVANet [6]	2023	$\times 2$	189.0G	902K	38.16	0.9612	33.80	0.9195	32.29	0.9012	32.60	0.9325	39.08	0.9775
SwinIR-NG (ours)	2023	$\times 2$	274.1G	1,181K	38.17	0.9612	33.94	0.9205	32.31	0.9013	32.78	0.9340	39.20	0.9781
SwinIR-light [27]	2021	$\times 3$	109.5 G	918 K	34.62	0.9289	30.54	0.8463	29.20	0.8082	28.66	0.8624	33.98	0.9478
ESRT [35]	2022	$\times 3$	96.4G	770 K	34.42	0.9268	30.43	0.8433	29.15	0.8063	28.46	0.8574	33.95	0.9455
ELAN-light [63]	2022	$\times 3$	75.7G	590K	34.61	0.9288	30.55	0.8463	29.21	0.8081	28.69	0.8624	34.00	0.9478
Divanet [6]	2023	$\times 3$	89.0G	949K	34.60	0.9285	30.47	0.8447	29.19	0.8073	28.58	0.8603	33.94	0.9468
SwinIR-NG (ours)	2023	$\times 3$	114.1G	1,190K	34.64	0.9293	30.58	0.8471	29.24	0.8090	28.75	0.8639	34.22	0.9488
SwinIR-light [27]	2021	$\times 4$	61.7G	930K	32.44	0.8976	28.77	0.7858	27.69	0.7406	26.47	0.7980	30.92	0.9151
ESRT [35]	2022	$\times 4$	67.7G	751K	32.19	0.8947	28.69	0.7833	27.69	0.7379	26.39	0.7962	30.75	0.9100
ELAN-light [63]	2022	$\times 4$	43.2 G	601 K	32.43	0.8975	28.78	0.7858	27.69	0.7406	26.54	0.7982	30.92	0.9150
Divanet [6]	2023	$\times 4$	57.0G	939 K	32.41	0.8973	28.70	0.7844	27.65	0.7391	26.42	0.7958	30.73	0.9119
SwinIR-NG \downarrow (ours)			42.5G	770K	32.44	0.8978	28.80	0.7863	27.70	0.7407	26.47	0.7977	30.97	0.9147
SwinIR-NG \downarrow^{\S} (ours)	2023	$\times 4$	42.5G	770K	32.48	0.8979	28.83	0.7868	27.71	0.7411	26.54	0.7998	31.12	0.9158
SwinIR-NG (ours)			63.0G	1,201K	32.44	0.8980	28.83	0.7870	27.73	0.7418	26.61	0.8010	31.09	0.9161

2nd Track: Lightweight Super-Resolution (SwinIR-NG = SwinIR-light + N-Gram)

3 Results

Sogang University
Machine Learning Laboratory

Main Results

3 Results

Ablations

(a) N-Gram context (Tab. 4).
cipp inum
Sogang University
Machine Learning Laboratory
NGswin without $v s$. with N-Gram

N-Gram	Scale	Mult-Adds	\#Params	Set5	Set14	BSD100	Urban100	Manga109
w/o	$\times 2$	138.20G	750 K	38.05 / 0.9609	33.70 / 0.9194	32.25 / 0.9006	32.39 / 0.9304	38.86 / 0.9775
w/		140.41G	998K	38.05 / 0.9610	33.79 / 0.9199	32.27 / 0.9008	32.53 / 0.9324	38.97 / 0.9777
w/o	$\times 3$	65.53G	759K	34.53 / 0.9281	30.48 / 0.8451	29.15 / 0.8073	$28.37 / 0.8573$	$33.81 / 0.9464$
$\boldsymbol{w} /$		66.56G	1,007K	34.52 / 0.9282	$\mathbf{3 0 . 5 3} / 0.8456$	29.19 / 0.8078	28.52 / 0.8603	33.89 / 0.9470
w/o	$\times 4$	35.89G	771 K	32.34 / 0.8963	28.70/0.7844	$27.63 / 0.7390$	26.25 / 0.7918	30.70 / 0.9123
w / o (channel up)		53.71 G	1,189K	32.37 / 0.8973	$28.75 / 0.7854$	$27.65 / 0.7396$	26.28 / 0.7927	30.73 / 0.9129
w / o (depth up)		47.88G	1,061K	32.40 / 0.8967	28.75 / 0.7853	27.66 / 0.7398	$26.37 / 0.7946$	30.78 / 0.9133
$w /$		36.44G	1,019K	32.33 / 0.8963	28.78 / 0.7859	27.66 / 0.7396	26.45 / 0.7963	$\mathbf{3 0 . 8 0} / 0.9128$

N-Gram	Scale	Mult-Adds	\#Params	Set5	Set14	BSD100	Urban100	Manga109
w/o	$\times 2$	82.39G	357K	38.08 / 0.9608	$\mathbf{3 3 . 6 5} / 0.9182$	32.22 / 0.9001	32.22 / 0.9294	38.87 / 0.9774
$\boldsymbol{w} /$		83.19G	424K	38.10 / 0.9610	33.64 / 0.9195	32.25 / 0.9006	$\mathbf{3 2 . 3 5} / 0.9306$	38.94 / 0.9774
w/o	$\times 3$	37.78G	363K	34.47 / 0.9275	30.44 / 0.8439	29.15 / 0.8067	28.28 / 0.8557	33.81 / 0.9459
$w /$		38.14G	431K	34.48 / 0.9280	$\mathbf{3 0 . 4 8} / \mathbf{0 . 8 4 5 0}$	29.16 / 0.8074	28.38 / 0.8573	33.81 / 0.9464
w/o	$\times 4$	22.01 G	373K	$32.31 / 0.8957$	28.71/0.7834	27.63/0.7381	26.20 / 0.7896	30.70 / 0.9112
$w /$		22.21G	440K	32.32 / 0.8960	28.72 / 0.7846	27.65 / 0.7391	26.23 / 0.7912	30.71 / 0.9114

(b) N-Gram directions and interaction (Tab. 5). The second best results are in underline.

Direction	Type	Mult-Adds	\#Params	Set5	Set14	BSD100	Urban100	Manga109
1	WSA	152.41 G	1,238,056	$\underline{38.05 / 0.9610}$	33.78 / 0.9198	32.26/0.9006	32.54 / 0.9322	38.90 / 0.9777
4	WSA	139.56G	935,272	38.07 / 0.9609	$33.76 / 0.9197$	$32.25 / 0.9007$	$32.52 / 0.9317$	38.92 / 0.9776
1	CNN	139.80G	1,327,528	38.04 / 0.9610	33.77 / 0.9197	$32.25 / 0.9005$	32.45 / 0.9316	38.86 / 0.9775
2	CNN	139.38G	998,568	38.04 / 0.9610	33.83 / 0.9203	$\underline{32.26 / 0.9007}$	32.54 / 0.9321	38.90 / 0.9776
4	CNN	139.17G	936,488	38.02 / 0.9609	33.77 / 0.9178	32.26/0.9006	32.52 / 0.9320	38.93 / 0.9777
2	WSA	140.41G	998,384	38.05 / 0.9610	$\underline{33.79 / 0.9199}$	32.27 / 0.9008	32.53 / 0.9324	38.97 / 0.9777

3 Results

Visual Results (vs. other networks)

Thank You

