

Generating Human Motion from Textual Descriptions with Discrete Representations

Jianrong Zhang^{1,3*}, Yangsong Zhang^{2,3*}, Xiaodong Cun³, Yong Zhang³, Hongwei Zhao¹ Hongtao Lu², Xi Shen^{3,†}, Shan Ying³ *Equal contribution [†]Corresponding author ¹Jilin University ²Shanghai Jiao Tong University ³Tencent AI Lab

Motivation

Ground-truth

Ground-truth

Our generation

Our generation

"a man starts off in an upright position with both arms extended out by his

Contributions:

- 1. We present a simple yet effective approach for motion generation from textual descriptions
- 2. We show that GPT-like models incorporating discrete representations still remain a very competitive approach for motion generation
- 3. We provide a detailed analysis of the impact of quantization strategies and dataset size

Previous work:

- 1. T2M (Guo et al. 2022, CVPR): motion length prediction
- 2. TM2T (Guo et al. 2022, ECCV): text-to-motion and motion-to-text tasks
- 3. TEMOS (Petrovich et al. 2022, ECCV): transformer-based VAE
- 4. MotionDiffuse (Zhang et al. 2022, Arxiv): diffusion-based models
- 5. MDM (Tevet et al. 2023, ICLR): diffusion-based models

5

TEMOS

Fext-to-Motions branch

Methods: stage 1

Quantization strategy: EMA: $C^t \leftarrow \lambda C^{t-1} + (1-\lambda)C^t$

Code reset: reassigns inactivate codes

Methods: stage 2

T2M-GPT

Results

Methods	R -Precision ↑			EID 1	MM Dist 1	Diversity A	MM adality A
	Top-1	Top-2	Top-3	FID↓	WIWI-DISt ↓	Diversity	wilviouanty
Real motion	$0.511^{\pm.003}$	$0.703^{\pm.003}$	$0.797^{\pm.002}$	$0.002^{\pm.000}$	$2.974^{\pm.008}$	$9.503^{\pm.065}$	
Our VQ-VAE (Recons.)	$0.501^{\pm.002}$	$0.692^{\pm.002}$	$0.785^{\pm.002}$	$0.070^{\pm.001}$	$3.072^{\pm.009}$	$9.593^{\pm.079}$	-
Seq2Seq [42]	$0.180^{\pm.002}$	$0.300^{\pm.002}$	$0.396^{\pm.002}$	$11.75^{\pm.035}$	$5.529^{\pm.007}$	$6.223^{\pm.061}$	
Language2Pose [3]	$0.246^{\pm.002}$	$0.387^{\pm.002}$	$0.486^{\pm.002}$	$11.02^{\pm.046}$	$5.296^{\pm.008}$	$7.676^{\pm.058}$	
Text2Gesture [10]	$0.165^{\pm.001}$	$0.267^{\pm.002}$	$0.345^{\pm.002}$	$5.012^{\pm.030}$	$6.030^{\pm.008}$	$6.409^{\pm.071}$	-
Hier [21]	$0.301^{\pm.002}$	$0.425^{\pm.002}$	$0.552^{\pm.004}$	$6.532^{\pm.024}$	$5.012^{\pm.018}$	$8.332^{\pm.042}$	12
MoCoGAN [67]	$0.037^{\pm.000}$	$0.072^{\pm.001}$	$0.106^{\pm.001}$	$94.41^{\pm.021}$	$9.643^{\pm.006}$	$0.462^{\pm.008}$	$0.019^{\pm.000}$
Dance2Music [37]	$0.033^{\pm.000}$	$0.065^{\pm.001}$	$0.097^{\pm.001}$	$66.98^{\pm.016}$	$8.116^{\pm.006}$	$0.725^{\pm.011}$	$0.043^{\pm.001}$
TEMOS§ [53]	$0.424^{\pm.002}$	$0.612^{\pm.002}$	$0.722^{\pm.002}$	$3.734^{\pm.028}$	$3.703^{\pm.008}$	$8.973^{\pm.071}$	$0.368^{\pm.018}$
TM2T [23]	$0.424^{\pm.003}$	$0.618^{\pm.003}$	$0.729^{\pm.002}$	$1.501^{\pm.017}$	$3.467^{\pm.011}$	$8.589^{\pm.076}$	$2.424^{\pm.093}$
Guo et al. [22]	$0.455^{\pm.003}$	$0.636^{\pm.003}$	$0.736^{\pm.002}$	$1.087^{\pm.021}$	$3.347^{\pm.008}$	$9.175^{\pm.083}$	$2.219^{\pm.074}$
MLD [§] [71]	$0.481^{\pm.003}$	$0.673^{\pm.003}$	$0.772^{\pm.002}$	$0.473^{\pm.013}$	$3.196^{\pm.010}$	$9.724^{\pm.082}$	$2.413^{\pm.079}$
MDM [66] [§]		-	$0.611^{\pm.007}$	$0.544^{\pm.044}$	$5.566^{\pm.027}$	$9.559^{\pm.086}$	$2.799^{\pm.072}$
MotionDiffuse [74]§	$0.491^{\pm.001}$	$0.681^{\pm.001}$	$0.782^{\pm.001}$	$0.630^{\pm.001}$	$3.113^{\pm.001}$	$9.410^{\pm.049}$	$1.553^{\pm.042}$
Our GPT ($\tau = 0$)	$0.417^{\pm.003}$	$0.589^{\pm.002}$	$0.685^{\pm.003}$	$0.140^{\pm.006}$	$3.730^{\pm.009}$	$9.844^{\pm.095}$	$3.285^{\pm.070}$
Our GPT ($\tau = 0.5$)	$0.491^{\pm.003}$	$0.680^{\pm.003}$	$0.775^{\pm.002}$	$0.116^{\pm.004}$	$3.118^{\pm.011}$	$9.761^{\pm.081}$	$1.856^{\pm.011}$
Our GPT ($\tau \in \mathcal{U}[0,1]$)	$0.492^{\pm.003}$	$0.679^{\pm.002}$	$0.775^{\pm.002}$	$0.141^{\pm.005}$	$3.121^{\pm.009}$	$9.722^{\pm.082}$	$1.831^{\pm.048}$

Table 1. Comparison with the state-of-the-art methods on HumanML3D [22] test set. We compute standard metrics following Guo *et al.* [22]. For each metric, we repeat the evaluation 20 times and report the average with 95% confidence interval. Red and Blue indicate the best and the second best result. § reports results using ground-truth motion length.

Results

Methods	R-Precision ↑			EID	MM Dist	Diversity *	MModality *
	Top-1	Top-2	Top-3	rıD↓	wiwi-Dist↓	Diversity	whytodanty
Real motion	$0.424^{\pm.005}$	$0.649^{\pm.006}$	$0.779^{\pm.006}$	$0.031^{\pm.004}$	$2.788^{\pm.012}$	$11.08^{\pm.097}$	1 - 0
Our VQ-VAE (Recons.)	$0.399^{\pm.005}$	$0.614^{\pm.005}$	$0.740^{\pm.006}$	$0.472^{\pm.011}$	$2.986^{\pm.027}$	$10.994^{\pm.120}$	0
Seq2Seq [42]	$0.103^{\pm.003}$	$0.178^{\pm.005}$	$0.241^{\pm.006}$	$24.86^{\pm.348}$	$7.960^{\pm.031}$	$6.744^{\pm.106}$	
Language2Pose [3]	$0.221^{\pm.005}$	$0.373^{\pm.004}$	$0.483^{\pm.005}$	$6.545^{\pm.072}$	$5.147^{\pm.030}$	$9.073^{\pm.100}$	377.9
Text2Gesture [10]	$0.156^{\pm.004}$	$0.255^{\pm.004}$	$0.338^{\pm.005}$	$12.12^{\pm.183}$	$6.964^{\pm.029}$	$9.334^{\pm.079}$	
Hier [21]	$0.255^{\pm.006}$	$0.432^{\pm.007}$	$0.531^{\pm.007}$	$5.203^{\pm.107}$	$4.986^{\pm.027}$	$9.563^{\pm.072}$	73
MoCoGAN [67]	$0.022^{\pm.002}$	$0.042^{\pm.003}$	$0.063^{\pm.003}$	$82.69^{\pm.242}$	$10.47^{\pm.012}$	$3.091^{\pm.043}$	$0.250^{\pm.009}$
Dance2Music [37]	$0.031^{\pm.002}$	$0.058^{\pm.002}$	$0.086^{\pm.003}$	$115.4^{\pm.240}$	$10.40^{\pm.016}$	$0.241^{\pm.004}$	$0.062^{\pm.002}$
TEMOS [§] [53,71]	$0.353^{\pm.002}$	$0.561^{\pm.002}$	$0.687^{\pm.002}$	$3.717^{\pm.028}$	$3.417^{\pm.008}$	$10.84^{\pm.071}$	$0.532^{\pm.018}$
TM2T [23]	$0.280^{\pm.006}$	$0.463^{\pm.007}$	$0.587^{\pm.005}$	$3.599^{\pm.051}$	$4.591^{\pm.019}$	$9.473^{\pm.100}$	$3.292^{\pm.034}$
Guo et al. [22]	$0.361^{\pm.006}$	$0.559^{\pm.007}$	$0.681^{\pm.007}$	$3.022^{\pm.107}$	$3.488^{\pm.028}$	$10.72^{\pm.145}$	$2.052^{\pm.107}$
MLD§ [71]	$0.390^{\pm.008}$	$0.609^{\pm.008}$	$0.734^{\pm.007}$	$0.404^{\pm.027}$	$3.204^{\pm.027}$	$10.80^{\pm.117}$	$2.192^{\pm.071}$
MDM [66]§	-	-	$0.396^{\pm.004}$	$0.497^{\pm.021}$	$9.191^{\pm.022}$	$10.847^{\pm.109}$	$1.907^{\pm.214}$
MotionDiffuse [74]§	$0.417^{\pm.004}$	$0.621^{\pm.004}$	$0.739^{\pm.004}$	$1.954^{\pm.062}$	$2.958 \pm .005$	$11.10^{\pm.143}$	$0.730^{\pm.013}$
Our GPT ($\tau = 0$)	$0.392^{\pm.007}$	$0.600^{\pm.007}$	$0.716^{\pm.006}$	$0.737^{\pm.049}$	$3.237^{\pm.027}$	$11.198^{\pm.086}$	$2.309^{\pm.055}$
Our GPT ($\tau = 0.5$)	$0.402^{\pm.006}$	$0.619^{\pm.005}$	$0.737^{\pm.006}$	$0.717^{\pm.041}$	$3.053^{\pm.026}$	$10.862^{\pm.094}$	$1.912^{\pm.036}$
Our GPT ($\tau \in \mathcal{U}[0,1]$)	$0.416^{\pm.006}$	$0.627^{\pm.006}$	$0.745^{\pm.006}$	$0.514^{\pm.029}$	$3.007^{\pm.023}$	$10.921^{\pm.108}$	$1.570^{\pm.039}$

Table 2. Comparison with the state-of-the-art methods on KIT-ML [54] test set. We compute standard metrics following Guo *et al.* [22]. For each metric, we repeat the evaluation 20 times and report the average with 95% confidence interval. Red and Blue indicate the best and the second best result.[§] reports results using ground-truth motion length.

Ablation Study

Analysis of VQ-VAE quantizers on HumanML3D

Quantizer		Recons	truction	Generation		
Code Reset	EMA	$FID\downarrow$	Top-1 ↑	$\mathrm{FID}\downarrow$	Top-1 ↑	
		$0.492^{\pm.004}$	$0.436^{\pm.003}$	$42.797^{\pm.156}$	$0.048^{\pm.001}$	
	✓	$0.097^{\pm.001}$	$0.499^{\pm.002}$	$0.176^{\pm.008}$	$0.490^{\pm.002}$	
\checkmark		$0.102^{\pm.001}$	$0.494^{\pm.003}$	$0.248^{\pm.009}$	$0.461^{\pm.002}$	
\checkmark	✓	$0.070^{\pm.001}$	$0.501^{\pm.002}$	$0.116^{\pm.004}$	$0.491^{\pm.003}$	

Impact of dataset size on HumanML3D

Text: a man steps forward and does a handstand.

Text: A man rises from the ground, walks in a circle and sits back down on the ground.

Text: a person jogs in place, slowly at first, then increases speed. they then back up and squat down.

Ours

Ground-truth

Text: a man starts off in an up right position with botg arms extended out by his sides, he then brings his arms down to his body and claps his hands together. after this he wals down amd the the left where he proceeds to sit on a seat

More visual results are provided in the project page

Conclusion

- We investigated a classic framework based on VQ-VAE and GPT to synthesize human motion
- Our method achieved comparable or even better performances than concurrent diffusion-based approaches

Thank you!

- Project page: <u>https://mael-zys.github.io/T2M-GPT/</u>
- Code: https://github.com/Mael-zys/T2M-GPT