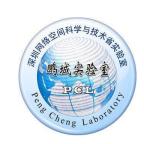
Fuzzy Positive Learning for Semi-supervised Semantic Segmentation

Thu 22 Jun 7:30 a.m. - 9:00 a.m. West Building Exhibit Halls ABC 296

Pengchong Qiao^{1,2,4*}, Zhidan Wei^{1,4*}, Yu wang^{1,4}, Zhennan Wang², Guoli song², Fan Xu², Xiangyang Ji³, Chang Liu^{3†}, Jie Chen^{1,2,4†}

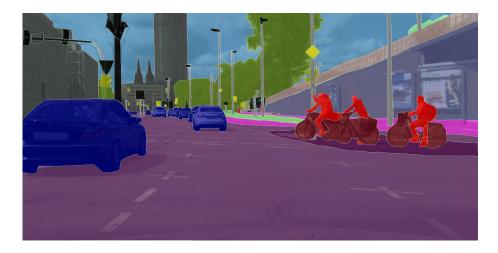
¹School of Electronic and Computer Engineering, Peking University, Shenzhen, China
²Peng Cheng Laboratory, Shenzhen, China
³Department of Automation and BNRist, Tsinghua University, Beijing, China
⁴AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, China

https://github.com/qpc1611094/FPL.



Background-----Definition of Semi-supervised Segmentation

A limited labeled dataset with pixel-level annotations:



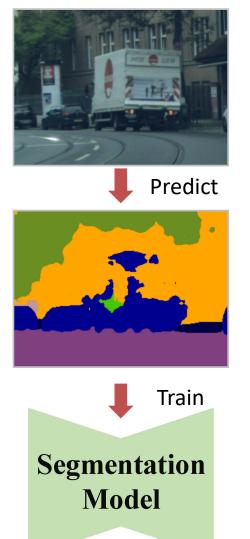


. . .

A huge unlabeled dataset without any annotation:

Motivation-----Limitation of Pseudo Label-based Learning

Explore semantics from unlabeled data



Unreliable pseudo labels



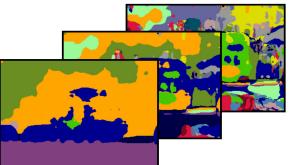
Ground Truth

Pseudo label

Inclusion of GT for Truck

Learn from multiple probably correct candidate labels.

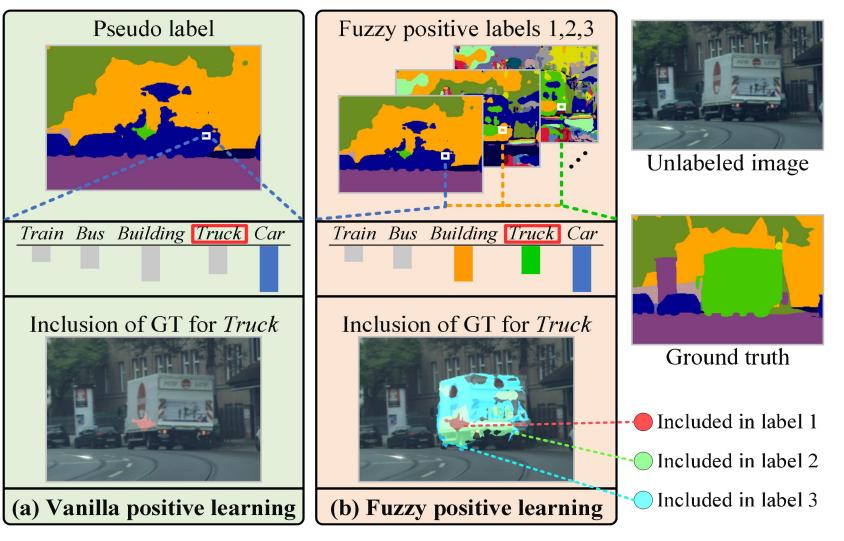
Ground Truth



Candidate labels

Inclusion of GT for Truck

Motivation-----Compare with vanilla methods



Two pending issues:

1. How to provide an adaptive number of labels for each pixel?

2. How to exploit the possible GT semantics from multiple fuzzy labels.

Method-----Pipeline

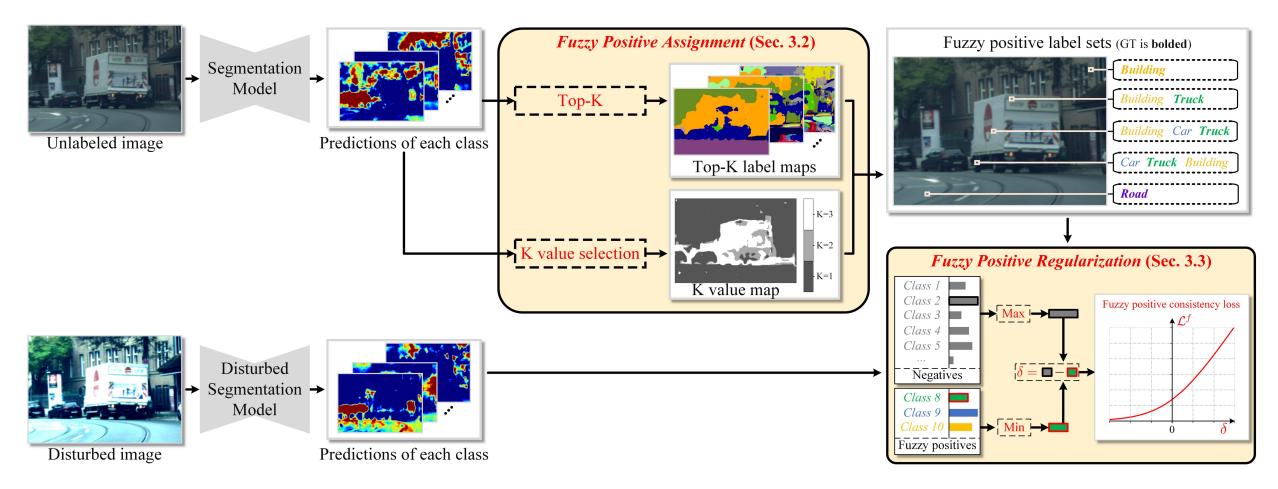


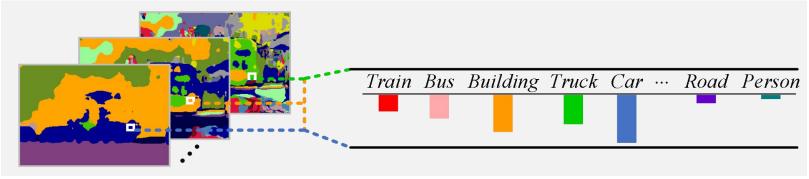
Figure 2. **Pipeline illustration of our FPL**, where FPA densely allocates multiple labels as a fuzzy positive label set for each pixel, while FPR enforces the discrimination of the fuzzy positive assigns with the rest negative labels to facilitate more reliable semantic generalization.

Realized in a plug-and-play manner

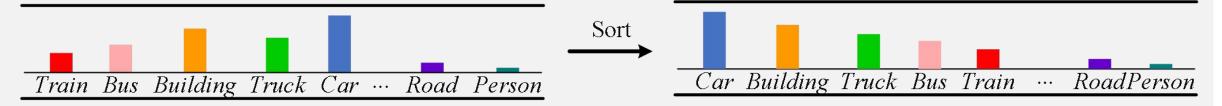
Method-----Fuzzy Positive Assignment (FPA)

How to allocate K candidate labels?

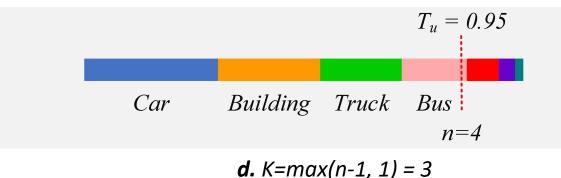
a. Set upper probability threshold T_u , get each pixel's prediction



b. Sort all probability values from large to small: p_1 , p_2 , p_3 , ..., p_C

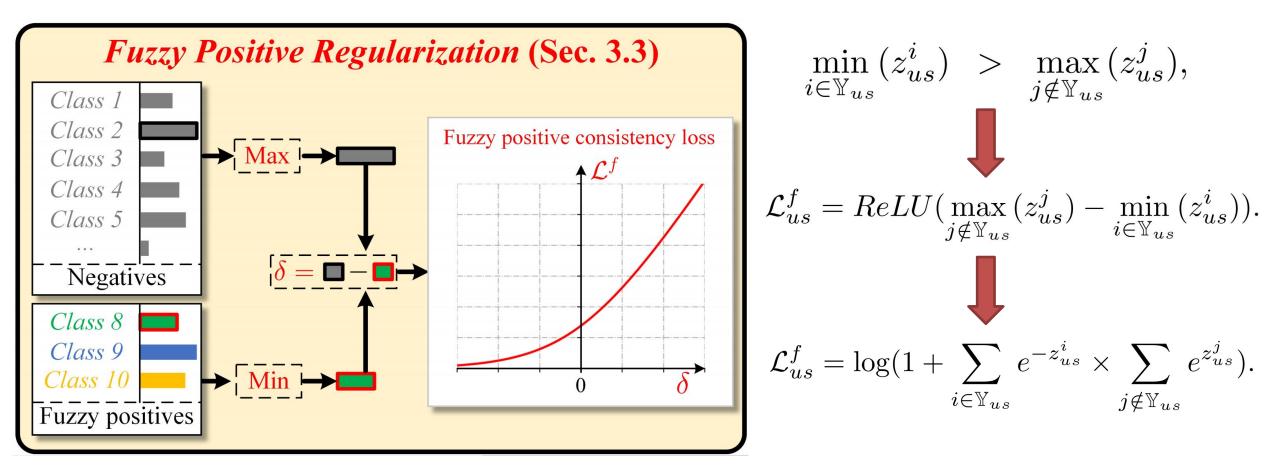


c. Record the first *n* value that satisfies the cumulative probability greater than $T_u: p_1+p_2+...+p_n >= T_u$



Method-----Fuzzy Positive Regularization (FPR)

How two learn the segmentation task with multiple labels?



Note that the classical cross entropy loss is a special case of FPR when K=1.

Experiments-----Quantitative experiment

Method	ResNet 50				ResNet 101			
	1/32 (93)	1/16 (186)	1/8 (372)	1/4 (744)	1/32 (93)	1/16 (186)	1/8 (372)	1/4 (744)
MT [40]	-	66.14	72.03	74.47	-	68.08	73.71	76.53
CCT [34]	-	66.35	72.46	75.68	-	69.64	74.48	76.35
GCT [17]	-	65.81	71.33	75.30	-	66.90	72.96	76.45
U ² PL [43]	-	-	-	-	-	74.90	76.48	78.51
CPS w/o cutmix [†] [5]	54.40	68.68	73.06	75.75	59.70	71.22	74.98	77.45
FPL+CPS w/o cutmix	55.77(1.37)	69.71(†1.03)	74.43(11.37)	76.76(1.01)	61.00(1.30)	72.05(† 0.83)	75.67(†0.69)	77.57(† 0.12)
CPS w/ cutmix [†] [5]	71.33	74.05	76.92	77.77	72.51	74.72	77.62	78.93
FPL+CPS w/ cutmix	72.39(11.06)	74.80 († 0.75)	77.32(<u></u> ^ 0.40)	78.53 († 0.76)	73.20(†0.69)	75.74(† 1.02)	78.47(<u></u> ^0.85)	79.19 († 0.26)
AEL [†] [14]	68.39	74.03	75.83	76.18	73.00	75.26	78.07	78.26
FPL+AEL	71.21(† 2.82)	74.54(† 0.51)	76.25(<u></u> 1 .42)	76.88(†0.70)	75.01 († 2.01)	76.58(1.32)	78.19(† 0.12)	78.46(† 0.20)

Table 1. The mIoU on Cityscapes. Results marked by † are reproduced in the same experimental environment as FPL.

Method		ResNet 50			ResNet 101	
Method	1/16 (662)	1/8 (1323)	1/4 (2646)	1/16 (662)	1/8 (1323)	1/4 (2646)
MT [40]	66.77	70.78	73.22	70.59	73.20	76.62
CCT [34]	65.22	70.87	73.43	67.94	73.00	76.17
CutMix-Seg [11]	68.90	70.70	72.46	72.56	72.69	74.25
GCT [17]	64.05	70.47	73.45	69.77	73.30	75.25
CAC [21]	70.10	72.40	74.00	72.40	74.60	76.30
CPS w/o cutmix [†] [5]	68.13	72.79	74.24	72.50	74.97	77.14
FPL+CPS w/o cutmix	68.67(<mark>10.54</mark>)	73.03(<mark>10.36</mark>)	74.80(<mark>10.56</mark>)	73.18(<mark>↑0.68</mark>)	75.74(<mark>↑0.77</mark>)	77.47(<mark>10.33</mark>)
CPS w/ cutmix [†] [5]	71.78	73.44	74.90	74.48	76.44	77.68
FPL+CPS w/ cutmix	72.52(<u></u> ^ 0.74)	73.74 (^0.30)	75.35(<mark>10.45</mark>)	74.98(<mark>↑0.50</mark>)	77.75(1.31)	78.30(^0.62)
AEL [†] [14]	69.93	73.17	75.50	74.20	76.58	77.98
FPL+AEL	71.01(†1.08)	73.69(<mark>↑0.52</mark>)	76.61 († 1.11)	74.98 (<u></u> ^0.78)	76.73(<mark>10.15</mark>)	78.35 (^0.37)

Table 2. The mIoU on VOC2012. Results marked by † are reproduced in the same experimental environment as FPL.

Justification-----Positive Gradient Score

An analysis using positive gradient score:

$$R_{us} = \frac{\partial \mathcal{L}_{us}}{\partial z_{us}^{gt}} / \sum_{i \in Y_{us}} \frac{\partial \mathcal{L}_{us}}{\partial z_{us}^{i}},$$

We can split all pixels into 3 cases:

Case 2. The top-1 prediction is wrong, but the GT is in the categories with top-K probabilities.

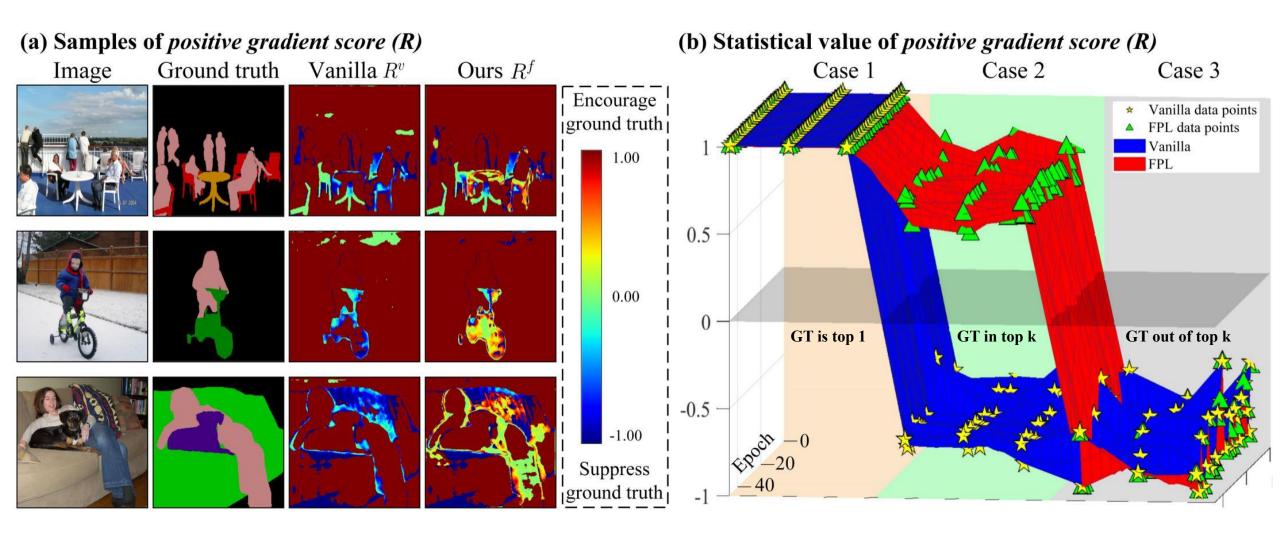
$$R_{us}^{v} = \frac{p_{us}^{gt}}{p_{us}^{pse} - 1} \in [-1, 0], \ R_{us}^{f} = \frac{e^{-z_{us}^{gt}}}{\sum_{i \in \mathbb{Y}_{us}} e^{-z_{us}^{i}}} \in [0, 1].$$

Case 1. The pseudo label is correct, that is, the GT is the top-1 predicted category.

Case 3. The pseudo label is wrong, and the GT is also outside the fuzzy positive labels

$$R_{us}^{v} = \frac{p_{us}^{gt} - 1}{p_{us}^{pse} - 1} = 1, \ R_{us}^{f} = \frac{e^{-z_{us}^{gt}}}{\sum_{i \in \mathbb{Y}_{us}} e^{-z_{us}^{i}}} \in [0, 1], \quad R_{us}^{v} = \frac{p_{us}^{gt}}{p_{us}^{pse} - 1} \in [-1, 0], \ R_{us}^{f} = \frac{-e^{z_{us}^{gt}}}{\sum_{j \notin \mathbb{Y}_{us}} e^{z_{us}^{j}}} \in [-1, 0]$$

Justification-----Positive Gradient Score



Fuzzy Positive Learning for Semi-supervised Semantic Segmentation

Pengchong Qiao^{1,2,4*}, Zhidan Wei^{1,4*}, Yu wang^{1,4}, Zhennan Wang², Guoli song², Fan Xu², Xiangyang Ji³, Chang Liu^{3†}, Jie Chen^{1,2,4†}

¹School of Electronic and Computer Engineering, Peking University, Shenzhen, China
²Peng Cheng Laboratory, Shenzhen, China
³Department of Automation and BNRist, Tsinghua University, Beijing, China
⁴AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, China

Thank You !

https://github.com/qpc1611094/FPL.