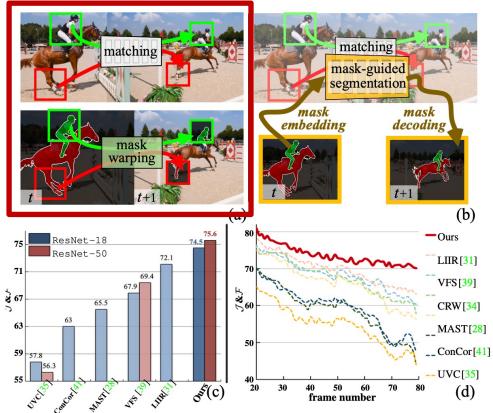
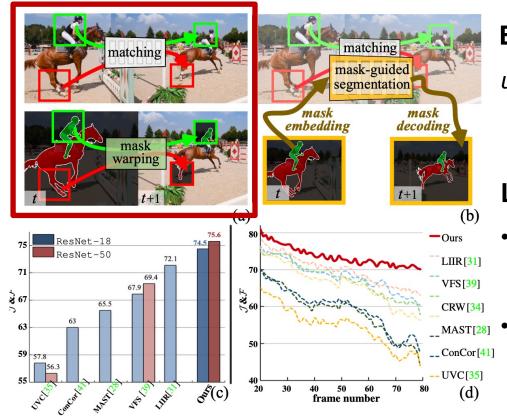


FRI-AM-213

Unified Mask Embedding and Correspondence Learning for Self-Supervised Video Segmentation

Liulei Li^{1,4}, Wenguan Wang^{1†}, Tianfei Zhou², Jianwu Li³, Yi Yang¹

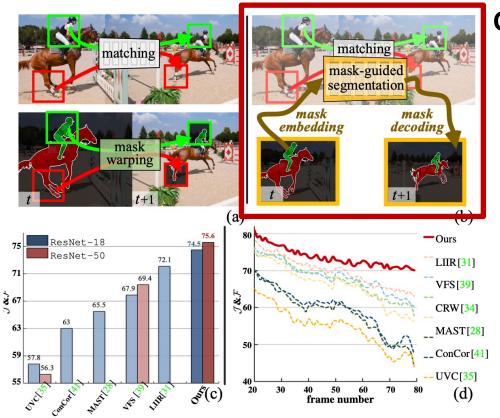

¹ ReLER, CCAI, Zhejiang University ² ETH Zurich ³ Rbeijing Institute of Technology ⁴ Baidu VIS


Correspondence Learning for Self-Supervised Video Segmentation

Existing solution:

unsupervised correspondence learning + non-learnable mask warping

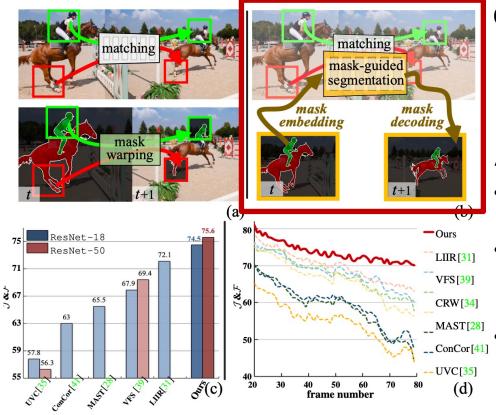
Correspondence Learning for Self-Supervised Video Segmentation


Existing solution:

unsupervised correspondence learning + non-learnable mask warping

Limitations:

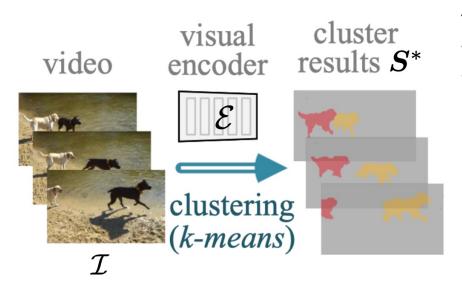
- leaving a significant gap between the training objective and task/inference setup.
- sensitive to outliers, resulting in error accum-ulation over time.


Unified Mask Embedding and Correspondence Learning

Our solution:

mask embedding learning + dense correspondence learning

Unified Mask Embedding and Correspondence Learning

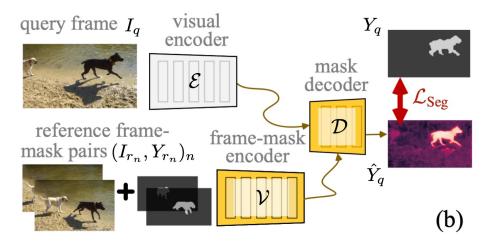

Our solution:

mask embedding learning + dense correspondence learning

Advantanges:

- Aligned training objective with the core nature of VOS.
- Target-oriented context can reduce error accumulation and perform more robust.
 - Empowered by more **advanced VOS model designs** in the fully-supervised learning setting.

Space-time Clustering

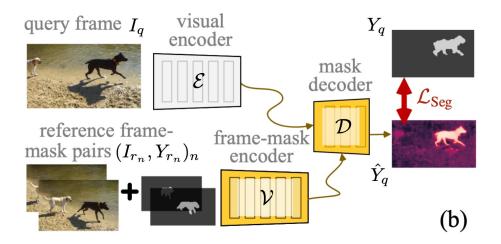


The goal of this step is to partition each training video into M space-time consistent segments, which can be achieved by solving the following optimization problem:

$$\min_{\boldsymbol{C},\boldsymbol{S}} \sum_{i \in \mathcal{I}} \|\boldsymbol{i} - \boldsymbol{C}\boldsymbol{s}_i\|, \quad \text{s.t. } \boldsymbol{s}_i \in \{0,1\}^M, \quad \boldsymbol{1}^\top \boldsymbol{s}_i = 1.$$

Moreover, to pursue spatiotemporally compact clusters, for each pixel, we supply its embedding with a 3D sinusoidal position encoding vector.

Mask-embedded Segmentation Learning



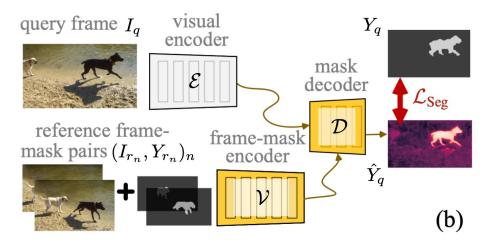
In this step, our model utilizes clustering results as pseudo ground-truths, to directly learn VOS as mask embedding and decoding.

We first apply our visual encoder and frame-mask encoder over each reference frame and each reference mask to obtain visual and target-specific embeddings:

$$\boldsymbol{I}_{r_n} = \mathcal{E}(I_{r_n}) \in \mathbb{R}^{HW \times D},$$
$$\boldsymbol{V}_{r_n} = \mathcal{V}([I_{r_n}, Y_{r_n}]) \in \mathbb{R}^{HW \times D'}$$

Mask-embedded Segmentation Learning

In this step, our model utilizes clustering results as pseudo ground-truths, to directly learn VOS as mask embedding and decoding.

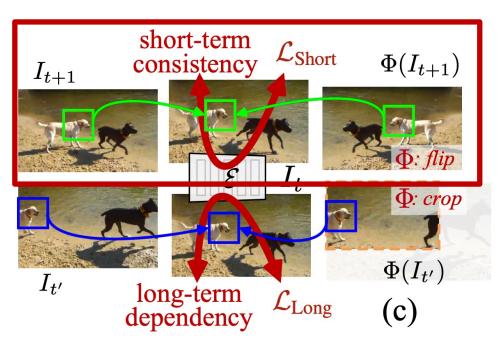

We then estimate the affinity between the query and reference frames by:

$$A = \texttt{softmax}(\boldsymbol{I}_r \boldsymbol{I}_q^\top) \in \mathbb{R}^{NHW \times HW}$$

Target-specific, supportive features are accordingly assembled to yield:

$$V_q = A^{\top} V_r \in \mathbb{R}^{HW \times D'}.$$

Mask-embedded Segmentation Learning


In this step, our model utilizes clustering results as pseudo ground-truths, to directly learn VOS as mask embedding and decoding. We first construct a coarse mask for the query image by warping the reference masks w.r.t. the affinity:

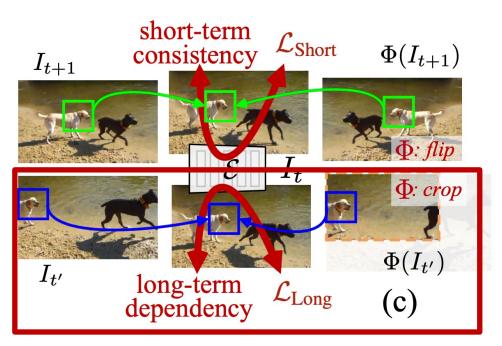
$$\bar{Y}_q = A^{\top}[Y_{r_1}, Y_{r_2}, \cdots, Y_{r_n}] \in \mathbb{R}^{HW}$$

The segmentation prediction for the query image is made by:

$$\hat{Y}_q = \mathcal{D}([V_q, \bar{V}_q]),$$

 $\bar{V}_q = \mathcal{V}([I_q, \bar{Y}_q]) \in \mathbb{R}^{HW \times D'}$

Self-supervised Dense Correspondence Learning


Short-term Appearance Consistency

 $\begin{array}{l} \bullet \ \mathcal{E}(I_t) \approx \mathcal{E}(I_{t+1}) \\ \text{short-term consistency} \end{array} \\ \bullet \ \mathcal{E}(\Phi(I_t)) = \Phi(\mathcal{E}(I_t)) \\ \text{transformation-equivariance} \end{array}$

 $I_{t})) \left\} \Rightarrow \mathcal{E}(\Phi(I_{t})) \approx \Phi(\mathcal{E}(I_{t+1})) \boldsymbol{\mathfrak{G}}.$

Given two successive frames $I_t, I_{t+1} \in \mathcal{I}$, their representations, delivered by the visual encoder, are constrained to be equivariant against geometric transformations (*i.e.*, scaling, flipping, and cropping).

Self-supervised Dense Correspondence Learning

Long-term Semantic Dependency

 $\mathbf{\Phi} \, \mathcal{E}(I_t) \approx A_{t'}^{t \top} \mathcal{E}(I_{t'})$ transformation-equivariance

 $\left.\begin{array}{l} \text{long-term dependency} \\ \boldsymbol{\mathfrak{O}} \mathcal{E}(\Phi(I_t)) = \Phi(\mathcal{E}(I_t)) \end{array}\right\} \Rightarrow \mathcal{E}(I_t) \approx A_{\Phi(t')}^{t\top} \Phi(\mathcal{E}(I_{t'})) \boldsymbol{\mathfrak{G}}.$

Given two distant frames $I_t, I_{t'} \in \mathcal{I}$ (s.t. $|t - t'| \geq 5$). their representations, after being aligned w.r.t. the affinity $A_{\prime\prime}^t$, are constrained to be equivariant against geometric transformations (i.e., scaling, flipping, and cropping).

Qulititative Results on DAVIS₁₇ val and YouTube-VOS val

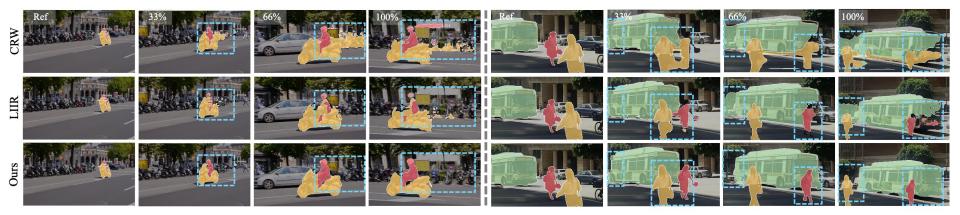


Figure 3. Visual comparison results (§4.1) on two videos from $DAVIS_{17}$ [42] val (left) and Youtube-VOS [52] val (right), respectively. CRW [34] and LIIR [31] suffer from error accumulation during mask tracking, due to the simple matching-based mask copy-paste strategy. However, our approach performs robust over time and yields more accurate segmentation results, by learning to embed target masks.

Quantitative Results on DAVIS₁₇ val

Method	Backbone	Dataset(size)	$\mathcal{J}\&\mathcal{F}_m\uparrow$	$\mathcal{J}_m \uparrow \mathcal{J}_r \uparrow \mathcal{F}$	$\mathcal{F}_m \uparrow \mathcal{F}_r \uparrow$
Colorization [26] [ECCV18]	ResNet-18	Kinetics(-, 800 hours)	34.0	34.6 34.1 3	2.7 26.8
CorrFlow [27] [BMVC19]	ResNet-18	OxUvA(-, 14 hours)	50.3	48.4 53.2 5	2.2 56.0
TimeCycle[32] [CVPR19]	ResNet-50	VLOG(-, 344 hours)	48.7	46.4 50.0 5	0.0 48.0
UVC[35] [NeurIPS19]	ResNet-18	C+Kinetics(30K, 800 hours)	57.8	56.3 65.0 5	9.2 64.1
MuG[59][CVPR20]	ResNet-18	OxUvA(-, 14 hours)	54.3	52.6 57.4 5	6.1 58.1
MAST[28] [CVPR20]	ResNet-18	Youtube-VOS(-, 5.58 hours)	65.5	63.3 73.2 6	7.6 77.7
CRW[34] [NeurIPS20]	ResNet-18	Kinetics(-, 800 hours)	68.3	65.5 78.6 7	1.0 82.9
ConCorr[41][AAAI21]	ResNet-18	C+TrackingNet(30K, 300 hours)	63.0	60.5 70.6 6	5.5 73.0
CLTC[37][CVPR21]	ResNet-18	Youtube-VOS(-, 5.58 hours)	70.3	67.9 78.2 7	2.6 83.7
JSTG[60][ICCV21]	ResNet-18	Kinetics(-, 800 hours)	68.7	65.8 77.7 7	1.6 84.3
VFS [39] [ICCV21]	ResNet-18	Kinetics(-, 800 hours)	67.9	65.0 77.2 7	0.8 82.3
	ResNet-50	Killeucs(-, 800 ilouis)	69.4	66.7 78.6 7	2.0 85.2
DINO [74] [ICCV21]	ResNet-50	I(1.28M, -)	56.2	54.5 58.1 5	7.9 60.3
	ViT-B/8	1(1.20101, -)	71.4	67.9 81.6 7	4.9 85.4
DUL [38] [NeurIPS21]	ResNet-18	Youtube-VOS(-, 5.58 hours)	69.3	67.1 81.2 7	1.6 84.9
SCR [40] [CVPR22]	ResNet-18	Kinetics(-, 800 hours)	70.5	67.4 78.8 7	3.6 84.6
LIIR [31] [CVPR22]	ResNet-18	Youtube-VOS(-, 5.58 hours)	72.1	69.7 81.4 7	4.5 85.9
Ound	ResNet-18	Voutube $VOS(5.59 \text{ hours})$	74.5	71.6 82.9 7	7.4 86.9
Ours	ResNet-50	Youtube-VOS(-, 5.58 hours)	75.6	73.3 83.6 7	7.8 87.3
OSVOS [12] [CVPR17]	VGG-16	I+D(1.28M, 10k)	60.3	56.6 63.8 6	3.9 73.8
STM [10] [ICCV19]	ResNet-50	I+D+Youtube-VOS(1.28M, 164k)	81.8	79.2 88.7 8	4.3 91.8

- I: ImageNet[75]; C: COCO [76]; D: DAVIS₁₇[42].

Table 1. Quantitative segmentation results (§4.1) on DAVIS₁₇[42] val. For dataset size, we report (#*raw* images, length of *raw* videos) for self-supervised methods and (#image-level annotations, #pixel-level annotations) for supervised methods.

Quantitative Results on DAVIS₁₇ test-dev and YouTube-VOS val

			Method	Backbone	<i>ጊ</i> ምፒ ተ	Seen		Unseen	
			Method	Dackbolle	$\mathcal{J}\&\mathcal{F}_m$ †-	$\mathcal{J}_m \uparrow$	$\mathcal{F}_m \uparrow$	$\mathcal{J}_m \uparrow$	$\mathcal{F}_m\uparrow$
Mathad Daalahana 787 A 7 A 7			Colorization [26] [ECCV18]	ResNet-18	38.9	43.1	38.6	36.6	37.4
	$\frac{\mathcal{F}_m\uparrow}{\mathcal{F}_m\uparrow}$	$\mathcal{F}_r\uparrow$	CorrFlow [27] [BMVC19]	ResNet-18	46.6	50.6	46.6	43.8	45.6
		64.5		ResNet-18		63.9	64.9	60.3	67.7
CRW[34] _[NeurIPS20] ResNet-18 55.9 52.3 -	59.6	-							
DUL[38] [NeurIPS21] ResNet-18 57.0 53.5 60.4 6	60.5	67.6	CRW[34] [NeurIPS20]			67.4	69.1	65.1	
SCR[40] _[CVPR22] ResNet-18 59.9 55.9 - 6	64.0	-	CLTC[37] [CVPR21]	ResNet-18	67.3	66.2	67.9	63.2	71.7
LIIR[31] [CVPR22] ResNet-18 57.5 55.2 63.1	59.8	68.6	DUL [38] [NeurIPS21]	ResNet-18	69.9	69.6	71.3	65.0	73.5
ResNet-18 61.3 59.4 66.5 (63.1	73.7	LIIR [31] [CVPR22]	ResNet-18	69.3	67.9	69.7	65.7	73.8
OURS ResNet-50 62.4 60.6 66.9	64.2	74.3	Ours	ResNet-18	71.6	71.0	74.2	66.0	75.3
RGMP[17] [CVPR18] ResNet-50 52.9 51.3 - 5	54.4	-	OURS	ResNet-50	72.4	71.7	74.6	67.0	76.2
STM[10] [ICCV19] ResNet-50 72.2 69.3 -	75.2	-	OSVOS[12] [CVPR17]	VGG-16	58.8	59.8	60.5	54.2	60.7
Table 2. Quantitative results $($ ^{4.1} $) on DAVIS_{17}[42]$ te	STM[10] [ICCV19]	ResNet-50	79.4	79.7	84.2	73.5	80.9		

Table 3. Quantitative results (§4.1) on YouTube-VOS [52] val.

Ablative studies on DAVIS₁₇

					_										
Loss	·	\mathcal{I} & \mathcal{F}_m	$\uparrow \mathcal{J}_m \uparrow$	\mathcal{F}_m	#R	#Ref. Frame		\mathcal{J} & \mathcal{F}_m \uparrow	$\mathcal{J}_m\!\!\uparrow$	$\mathcal{F}_m\!\!\uparrow$	#Centroid	$\mathcal{J}\&\mathcal{F}_m\!\!\uparrow$	\mathcal{J}_m	Γ.	\mathcal{F}_m †
$\mathcal{L}_{ ext{Short}}$		57.4	55.8	58.9		First		68.8	65.7	71.9	M=2	67.5	65.2	2 (69.8
$\mathcal{L}_{ ext{Long}}$		67.2	64.9	69.5	First	+Last	t 1:15	73.2	70.4	76.0	M=3	71.6	69.0) '	74.2
$\mathcal{L}_{\text{Short}} + \tilde{\mathcal{L}}$	Long	68.8	66.7	70.9	First	+Last	t 1:20	74.5	71.6	77.4	M=5	74.5	71.6	5 '	77.4
$\mathcal{L}_{ ext{Seg}}$	C C	62.3	60.5	64.0	First	+Last	t 1:25	73.5	70.9	76.1	M = 8	72.5	69.6	5 '	75.4
$\mathcal{L}_{Seg} + \mathcal{L}_{Short}$	+ \mathcal{L}_{Long}	74.5	71.6	77.4	– First	+ Last	t 1:30	72.8	70.2	75.3	M = 10	70.1	67.3	3 '	72.9
		(b) number of reference frames					(c) number of cluster centers								
Mask update	$\mathcal{J}\&\mathcal{F}_m\uparrow$	$\mathcal{J}_m\!\!\uparrow$	$\mathcal{F}_m\uparrow$	Round	$\mathcal{J}\&\mathcal{F}_m\uparrow$	$\mathcal{J}_m \uparrow$	$\mathcal{F}_m \uparrow$	FPS	Strate	gy	Loss	$\mathcal{J}\&\mathcal{F}_m\!\!\uparrow$	$\mathcal{J}_m \uparrow$	$\mathcal{F}_m \uparrow$	FPS
No update	71.1	68.3	73.9	0	69.7	67.3	72.1	1.86	photometric		MAST [28]	65.5	63.3	67.6	1.13
Per 20 epoch	72.8	69.9	75.7	1	72.6	69.8	75.4	1.84 (-1.1%)	reconstruction		MAST [28]+ \mathcal{L}_{Seg}	69.0 (+3.5)	66.4	71.6	1.01
Per 15 epoch	73.9	70.8	77.0	2	73.9	71.1	76.7	1.80 (-3.2%)	cycle-consistency		CRW [34]	67.6	64.6	70.6	1.86
Per 10 epoch	74.5	71.6	77.4	3	74.5	71.6	77.4	1.77 (-4.8%)	tracking		CRW [34]+ \mathcal{L}_{Seg}	71.8 (+4.2)	68.3	75.3	1.77
Per 5 epoch	72.5	69.5	75.5	4	74.3	71.2	77.3	1.73 (-7.0%)	contrastive		$\mathcal{L}_{\text{Corr}}$ (ours)	68.8	66.7	70.9	1.86
Every epoch	69.7	66.7	72.6	5	74.0	71.0	77.0	1.69 (-9.2%)	matching		\mathcal{L}_{Corr} + \mathcal{L}_{Seg}	74.5 (+5.7)	71.6	77.4	1.77

(d) pseudo mask update

(e) recurrent refinement

(f) correspondence learning schema

Table 4. A set of ablative studies on DAVIS₁₇[42] val (§4.2). The adopted settings are marked in red.

Thank you!