

Xin Li¹, Bingchen Li¹, Xin Jin², Cuiling Lan³, Zhibo Chen^{1†} ¹University of Science and Technology of China ²Eastern Institute for Advanced Study ³Microsoft Research Asia

Poster Tag: TUE-AM-163

Motivation

- Existing works on image restoration cannot generalize well to real-world degradations with different degrees and types.
- > A spurious correlation between I_d and I_o is captured by ERM, which introduce the bad confounding effects of specific distortion d and destroy the generalization capability of IR network.

D Distortion Set

- D_t Distortion Types
- D_l Distortion Degrees

 I_d Distorted Images

- I_o Ideal Reconstructed Images
- I_c Clean Images
- f Restoration Network
- d Distortion sampled from D

Contributions

- We revisit the image restoration task from a causality view and pinpoint that the reason for the poor generalization of the restoration network, is that the restoration network is not independent to the distortions in the training dataset.
- Based on the back-door criterion in causality, we propose a novel training paradigm, Distortion Invariant representation Learning (DIL) for image restoration, where the intervention is instantiated by a virtually model updating under the counterfactual distortion augmentation and is eliminated with the optimization based on meta-learning.

Methods

• Backdoor criterion in causal inference

$$P(Y|do(X)) = \sum P(Y|X, C = c)P(C = c)$$

- Image restoration with back-door criterion $P(I_o|do(I_d)) = \sum_{i=1}^{n} P(I_o|I_d, D = d_i)P(D = d_i)$
- Modeling $P(I_o|I_d, D = d_i)$ in optimization process

$$\phi_{d_i} = \theta - \alpha \nabla_{\theta} \mathcal{L}(f_{\theta}(I_{d_i}), I_c) \Longrightarrow \mathcal{L}(f_{\phi_{d_i}}(I_d), I_c)$$

• Modeling $P(I_o | do(I_d))$ with meta learning

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(I_d, I_c) \sim \mathcal{D}} \left[\sum_{d_i \in D} \mathcal{L}(f_{\phi_{d_i}}(I_d), I_c) \right]$$

- Four Variants:
 - DIL_{pf}: parallel sampling first-order gradient
 - *DIL*_{ps}: parallel sampling second-order gradient
 - *DIL_{sf}*: *serial* sampling first-order gradient
 - **DIL**_{ss}: serial sampling second-order gradient

• Two sampling strategies

$$\begin{array}{c}
\varphi_{d_1} \quad \nabla_{\theta} \mathcal{L}_d \\
\varphi_{d_2} \quad \nabla_{\theta} \mathcal{L}_d \\
\varphi_{d_n} \quad \varphi_{d_n} \quad \varphi_{d_n} \\
\varphi$$

Experiments

Image Denoising

Datasets	Levels	Methods				
Datasets	Levels	ERM	DIL_{sf}	DIL_{pf}	DIL_{ss}	DIL_{ps}
	30 (unseen)	24.90/0.581	30.29 _(5.39↑) /0.866	29.92 _(5.02⁺) /0.858	27.48 _(2.58↑) /0.809	29.14 _(4.24↑) /0.802
CBSD68 [40]	40 (<i>unseen</i>)	21.12/0.400	28.35 _(7.23⁺) /0.825	28.10 _(6.98↑) /0.812	25.90 _(4.78↑) /0.746	25.74 _(4.62⁺) /0.629
	50 (unseen)	18.96/0.307	26.64 _(7.68⁺) /0.779	26.61 _(7.65⁺) /0.766	24.63 _(5.67↑) /0.686	23.34 _(4.38↑) /0.501
	30 (unseen)	25.12/0.533	31.39 _(6.27⁺) /0.867	30.87 _(5.75⁺) /0.858	27.92 _(2.80↑) /0.801	29.86 _(4.74↑) /0.782
Kodak24 [16]	40 (unseen)	21.22/0.352	29.49 _(8.27⁺) /0.831	29.15 _(7.93⁺) /0.817	26.46 _(5.24↑) /0.738	26.13 _(4.91⁺) /0.588
	50 (unseen)	19.02/0.263	$27.76_{(8.74\uparrow)}/0.788$	27.67 _(8.65⁺) /0.775	25.24 _(6.22↑) /0.677	23.60(4.58)/0.457
	30 (unseen)	25.65/0.569	31.70 _(6.05⁺) /0.873	31.04 _(5.39↑) /0.853	28.15 _(2.50↑) /0.794	$30.09_{(4.44\uparrow)}/0.800$
McMaster [75]	40 (unseen)	21.73/0.373	29.81 (8.08 ⁺)/0.831	29.07 _(7.34⁺) /0.802	26.59 _(4.86⁺) /0.728	26.24 _(4.51↑) /0.605
	50 (unseen)	19.47/0.278	28.02 _(8.55⁺) /0.783	27.31 _(7.84⁺) /0.749	25.20 _(5.73↑) /0.664	23.60 _(4.13⁺) /0.466
	30 (unseen)	25.46/0.648	30.93 _(5.47⁺) /0.898	30.26 _(4.80⁺) /0.884	26.95 _(1.49↑) /0.825	29.73 _(4.27⁺) /0.841
Urban100 [22]	40 (unseen)	21.53/0.479	28.82 _(7.29⁺) /0.866	28.32 _(6.79↑) /0.848	25.26 _(3.73↑) /0.767	26.25 _(4.72⁺) /0.691
	50 (unseen)	19.28/0.389	26.88 _(7.60⁺) /0.829	26.63 _(7.35⁺) /0.811	23.85 _(4.57↑) /0.710	23.71 _(4.43⁺) /0.575
Manga109 [41]	30 (unseen)	26.62/0.653	31.97 _(5.35⁺) /0.910	31.14 _(4.52⁺) /0.901	$26.02_{(-0.6\uparrow)}/0.833$	31.05 _(4.43⁺) /0.858
	40 (unseen)	22.34/0.442	29.02 _(6.68⁺) /0.888	28.53 _(6.19↑) /0.875	24.31 _(1.97↑) /0.784	27.29 _(4.95⁺) /0.704
	50 (unseen)	19.95/0.342	26.52 _(6.57↑) /0.860	26.34 _(6.39↑) /0.846	22.82 _(2.87↑) /0.734	24.47 _(4.52↑) /0.564

Experiments

Image Deblurring

Datasets	Methods	Levels					
	wienious	4.2 (unseen)	4.4 (unseen)	4.6 (unseen)	4.8 (unseen)	5.0 (unseen)	
Set5 [1]	ERM	29.31/0.844	26.55/0.776	24.43/0.709	22.96/0.648	22.00/0.602	
5613 [4]	DIL	29.58 _(0.27↑) /0.848	27.52 _(0.97↑) /0.802	25.66 _(1.23↑) /0.751	24.38 _(1.42↑) /0.708	23.46 _(1.46↑) /0.671	
Set14 [71]	ERM	27.22/0.781	24.93/0.726	23.16/0.671	21.89/0.624	20.88/0.583	
	DIL	27.24 _(0.02↑) /0.778	25.78 _(0.85↑) /0.746	24.35 _(1.19↑) /0.708	23.23 _(1.34↑) /0.672	22.37 _(1.49↑) /0.640	
BSD100 [40]	ERM	27.20/0.784	25.17/0.732	23.50/0.682	22.24/0.639	21.28/0.602	
	DIL	27.37 _(0.17↑) /0.781	26.16 _(0.99↑) /0.753	24.91 _(1.41↑) /0.719	23.86 _(1.62↑) /0.686	23.02 _(1.74↑) /0.658	
Urban100 [22]	ERM	24.95/0.797	22.41/0.723	20.59/0.657	19.33/0.606	18.40/0.565	
	DIL	24.97 _(0.02↑) /0.793	23.26 _(0.85↑) /0.743	21.76 _(1.17↑) /0.693	20.70 _(1.37↑) /0.651	19.92 _(1.52↑) /0.618	
Manga109 [41]	ERM	28.16/0.865	23.96/0.791	21.21/0.713	19.63/0.652	18.63/0.606	
	DIL	28.09 _(-0.07↑) /0.867	25.41 _(1.45↑) /0.822	23.15 _(1.94↑) /0.771	21.69 _(2.06↑) /0.726	20.72 _(2.09↑) /0.691	

Experiments

Hybrid-distorted Image Restoration

Real	ISR
nea	

Methods	Datasets			
Methods	RealSR V3 [5] (unseen)	DrealSR [61] (unseen)		
Real-ESRNet [57]	26.19/0.7989	28.22/0.8470		
BSRNet [74]	27.46/0.8082	29.45/0.8579		
ERM	27.65/0.8098	29.73/0.8628		
DIL_{sf}	27.94 _(0.29↑) /0.8098	29.99 _(0.26↑) /0.8648		
DIL_{ps}	28.12 _(0.47↑) /0.8067	30.58 _(0.85↑) /0.8712		

Cross different backbones

Models	Methods	Datasets				
		CBSD68 [40]	Kodak24 [16]	Urban100 [22]		
RRDB	ERM	24.90/0.581	25.12/0.533	25.46/0.648		
	DIL	30.28/0.866	31.39/0.867	30.93/0.898		
SwinIR	ERM	24.22/0.551	24.22/0.493	24.73/0.618		
	DIL	29.08/0.798	29.71/0.774	29.72/0.834		

		Distortion level			
Datasets	Methods	Mild	Moderate	Severe	
		(unseen)	(unseen)	(seen)	
BSD100 [40]	ERM	25.31/0.687	24.62/0.642	25.27/0.617	
	DIL	26.37/0.691	25.23/0.645	25.22/0.613	
Urban100 [22]	ERM	23.97/0.736	22.51/0.674	23.38/0.655	
	DIL	25.00/0.747	23.13/0.682	23.20/0.645	
Manga109 [41]	ERM	27.43/0.863	24.85/0.808	26.50/0.815	
	DIL	28.41/0.868	25.30/0.810	26.19/0.766	
DIV2K [2]	ERM	26.19/0.766	25.94/0.744	27.42/0.742	
	DIL	27.84/0.785	26.89/0.756	27.38/0.737	

Experiments

Real Image Denoising & Image Deraining

Methods -	Datasets (Rea	al Denoising)	Datasets (Deraining)			
	SIDD [1]	DND [47]	Rain100L [64]	Rain12 [33]	Rain800 [73]	
ERM	38.90/0.9379	38.67/0.9549	27.61/0.8577	31.44/0.8947	23.36/0.8199	
DIL_{sf}	39.96 _(1.06↑) /0.9410	39.16 _(0.49↑) /0.9531	28.15 _(0.54↑) /0.8679	32.43 _(0.99↑) /0.9163	23.41 _(0.05↑) /0.8261	
DIL_{ps}	39.92 _(1.02↑) /0.9385	39.03 _(0.36↑) /0.9553	28.37 _(0.76↑) /0.8739	33.07 _(1.63↑) /0.9266	23.52 _(0.16↑) /0.8281	

Subjective Comparison

Image Denoising

Subjective Comparison

Hybrid-distorted Image Restoration

Input

Hybrid distortion

Ground Truth

RealSR \succ

Subjective Comparison

Image Deblurring

THANK YOU

