

# OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation



Tong Wu



Jiarui Zhang



Xiao Fu



Yuxin Wang



Jiawei Ren



Liang Pan



Wayne Wu



Lei Yang



Jiaqi Wang



Chen Qian



Dahua Lin



Ziwei Liu

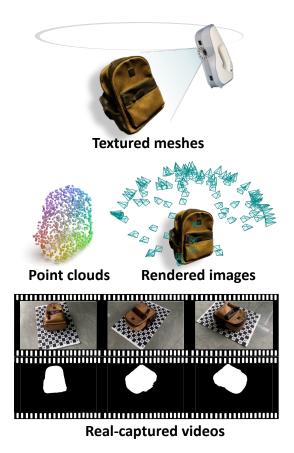






Paper tag: TUE-AM-076








#### **Overview**







**Perception** 



**Novel View Synthesis** 



**Surface Reconstruction** 




Generation



# **Background and motivation**





large in scale

**Multi-view images** 

CO<sub>3</sub>D

No 3D GT

# **Real-world 3D scans**



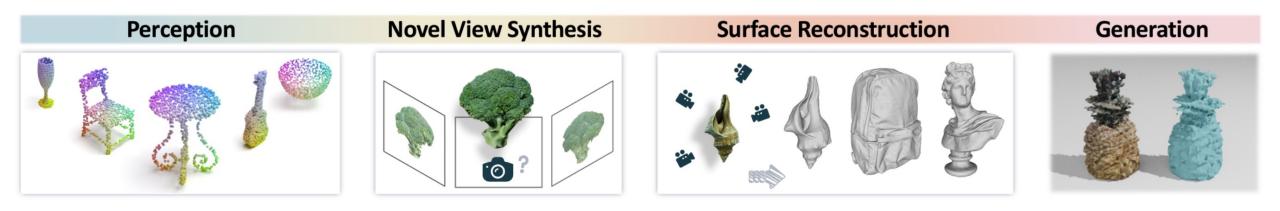





#### **Statistics**








|                        | Dataset    | Year | Real | Full 3D | Video | Num Objs | Num Cats |
|------------------------|------------|------|------|---------|-------|----------|----------|
| Synthetic<br>data      | ShapeNet   | 2015 |      | ٧       |       | 51k      | 55       |
|                        | ModelNet   | 2014 |      | ٧       |       | 12k      | 40       |
|                        | Objaverse  | 2023 |      | ٧       |       | 818k     | 21k      |
|                        | 3D-Future  | 2020 |      | ٧       |       | 16k      | 34       |
|                        | ABO        | 2021 |      | ٧       |       | 8k       | 63       |
|                        | Toys4K     | 2021 |      | ٧       |       | 4k       | 105      |
| Multi-view image       | CO3D V1/V2 | 2021 | ٧    |         | ٧     | 19k/40k  | 50       |
|                        | MVImgNet   | 2023 | ٧    |         | ٧     | 219k     | 238      |
|                        | DTU        | 2014 | ٧    | ٧       |       | 124      | NA       |
| Real-world<br>3D scans | GSO        | 2021 | ٧    | ٧       |       | 1k       | 17       |
|                        | AKB-48     | 2022 | ٧    | ٧       |       | 2k       | 48       |
|                        | Ours       | 2022 | ٧    | V       | ٧     | 6k       | 190      |

online assets with a variety of data types

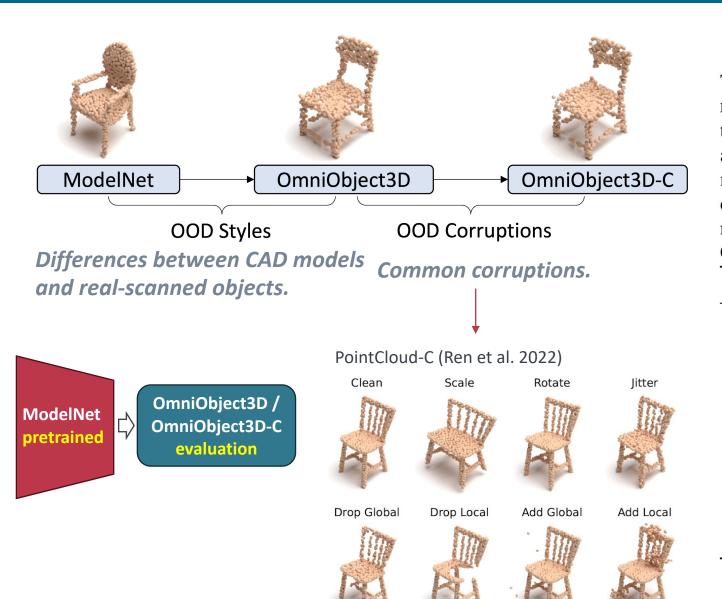


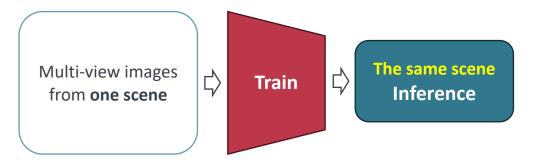
# **Applications**

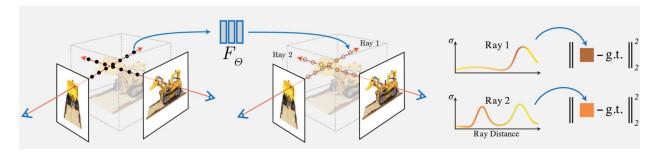


### Robustness of point cloud classification







Table 2. Point cloud perception robustness analysis on OmniObject3D with different architecture designs. Models are trained on the ModelNet-40 dataset, with OA<sub>Clean</sub> to be their overall accuracy on the standard ModelNet-40 test set. OA<sub>Style</sub> on OmniObject3D evaluates the robustness to OOD styles. mCE on the corrupted OmniObject3D-C evaluates the robustness to OOD corruptions. Blue shadings indicate rankings. †: results on ModelNet-C [75]. Full results are presented in the supplementary materials.

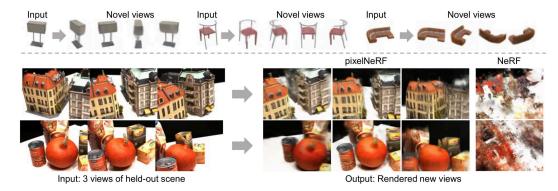

|                 | $mCE^{\dagger}\downarrow$ | OA <sub>Clean</sub> ↑ | $OA_{Style} \uparrow$ | mCE ↓ |
|-----------------|---------------------------|-----------------------|-----------------------|-------|
| DGCNN [92]      | 1.000                     | 0.926                 | 0.448                 | 1.000 |
| PointNet [71]   | 1.422                     | 0.907                 | 0.466                 | 0.969 |
| PointNet++ [72] | 1.072                     | 0.930                 | 0.407                 | 1.066 |
| RSCNN [51]      | 1.130                     | 0.923                 | 0.393                 | 1.076 |
| SimpleView [30] | 1.047                     | 0.939                 | 0.476                 | 0.990 |
| GDANet [99]     | 0.892                     | 0.934                 | 0.497                 | 0.920 |
| PAConv [98]     | 1.104                     | 0.936                 | 0.403                 | 1.073 |
| CurveNet [97]   | 0.927                     | 0.938                 | 0.500                 | 0.929 |
| PCT [32]        | 0.925                     | 0.930                 | 0.459                 | 0.940 |
| RPC [75]        | 0.863                     | 0.930                 | 0.472                 | 0.936 |

#### Novel view synthesis (two settings)



#### ☐ Single-scene optimization models



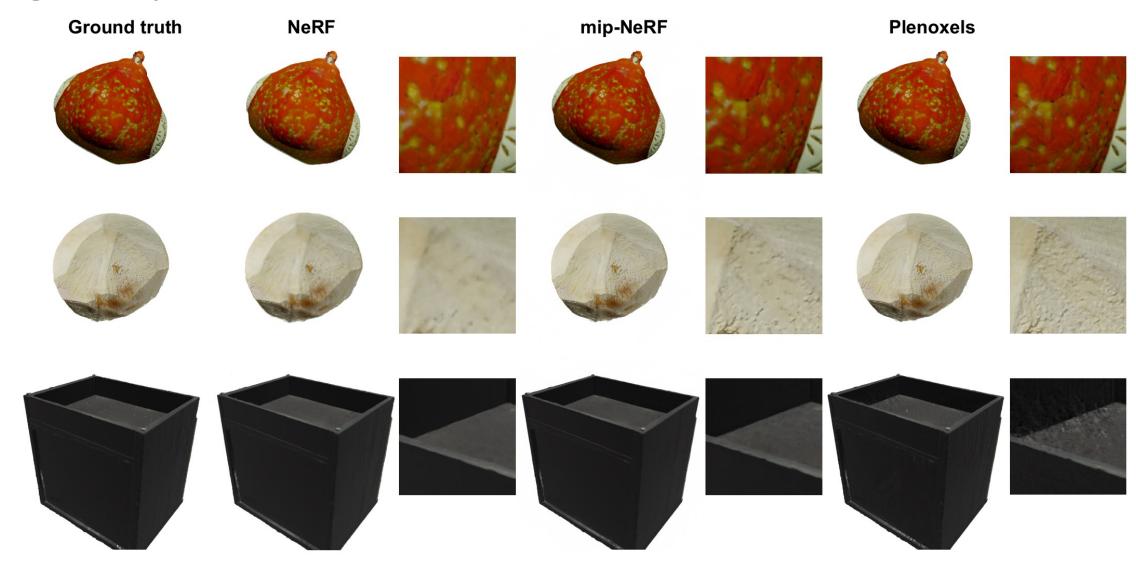





- NeRF (Mildenhall et al., 2021)
- Mip-NeRF (Barron et al., 2021)
- Plenoxels (Yu et al., 2021)

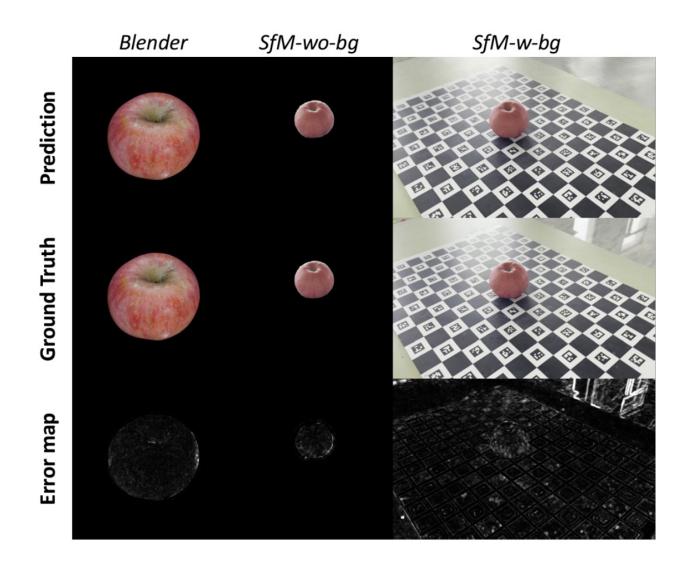
#### ☐ Generalizable models








- pixelNeRF (Yu et al., 2021)
- MVSNeRF (Chen et al., 2021)
- IBRNet (Wang et al., 2021)




☐ Single-scene optimization models





☐ Single-scene optimization models





☐ Single-scene optimization models -> Results by mip-NeRF

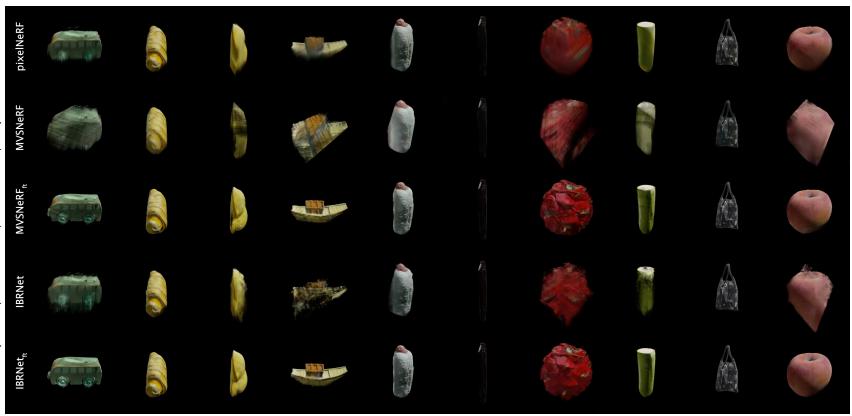










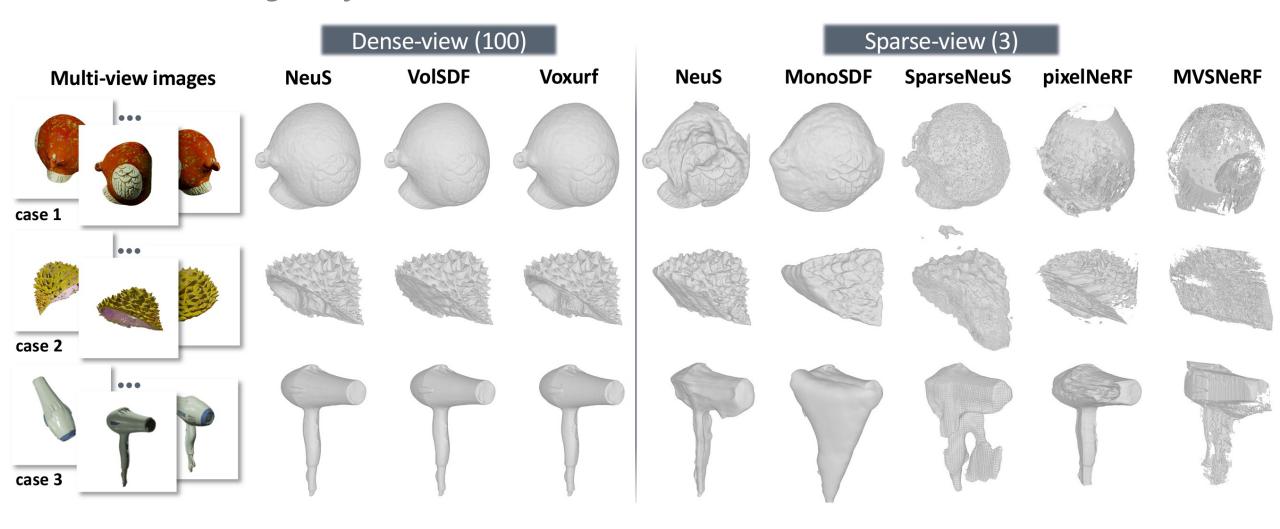





#### ☐ Generalizable models

Table 4. Cross-scene novel view synthesis results on 10 categories. 'Cat.' and 'All\*' denote training on each category and training on all categories except the 10 test ones, respectively.

| Method          | Train    | PSNR (†) | SSIM (†) | LPIPS (↓) | $\mathcal{L}_{1}^{	ext{depth}}\left( \downarrow  ight)$ |
|-----------------|----------|----------|----------|-----------|---------------------------------------------------------|
|                 | All*     | 17.49    | 0.544    | 0.442     | 0.193                                                   |
| MVSNeRF [11]    | Cat.     | 17.54    | 0.542    | 0.448     | 0.230                                                   |
|                 | All*-ft. | 25.70    | 0.754    | 0.251     | 0.081                                                   |
|                 | Catft.   | 25.52    | 0.750    | 0.264     | 0.076                                                   |
|                 | All*     | 19.39    | 0.569    | 0.399     | 0.423                                                   |
|                 | Cat.     | 19.03    | 0.551    | 0.415     | 0.290                                                   |
| IBRNet [91]     | All*-ft. | 26.89    | 0.792    | 0.215     | 0.081                                                   |
|                 | Catft.   | 25.67    | 0.760    | 0.238     | 0.099                                                   |
|                 | All*     | 22.16    | 0.692    | 0.342     | 0.109                                                   |
| pixelNeRF [105] | Cat.     | 20.65    | 0.676    | 0.348     | 0.195                                                   |



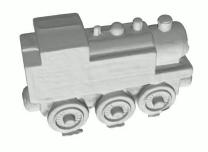

We show examples of cross-scene NVS by pixelNeRF, MVSNeRF, and IBRNet given 3 views (ft denotes fine-tuned with 10 views).

#### Surface reconstruction (two settings)

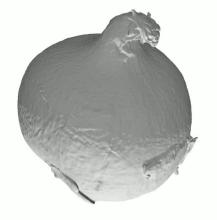


#### ☐ Multi-view image surface reconstruction




#### **Surface reconstruction**



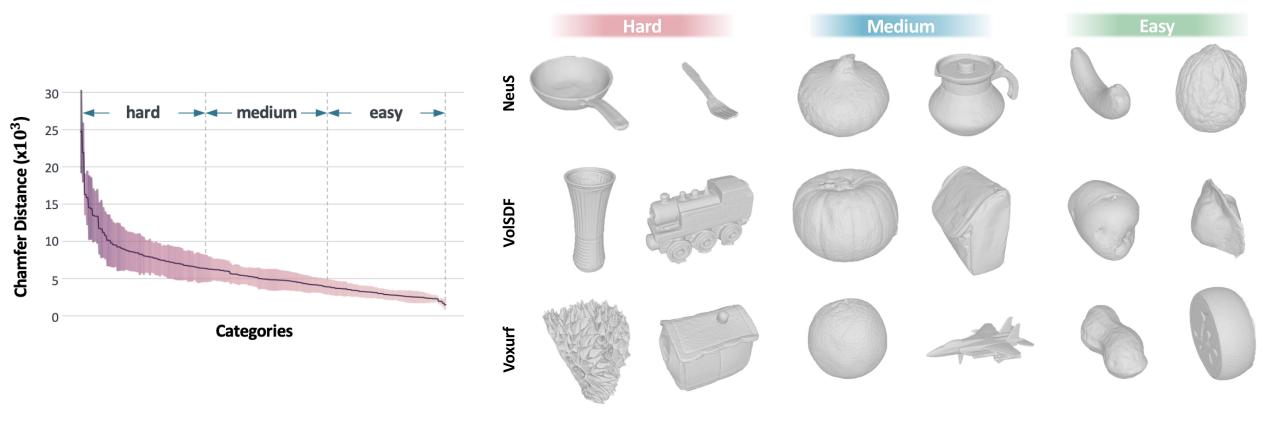

☐ Multi-view image surface reconstruction (dense-view)














#### **Surface reconstruction**



#### ☐ Multi-view image surface reconstruction (dense-views)



#### **Surface reconstruction**



#### ☐ Multi-view image surface reconstruction (sparse-view)

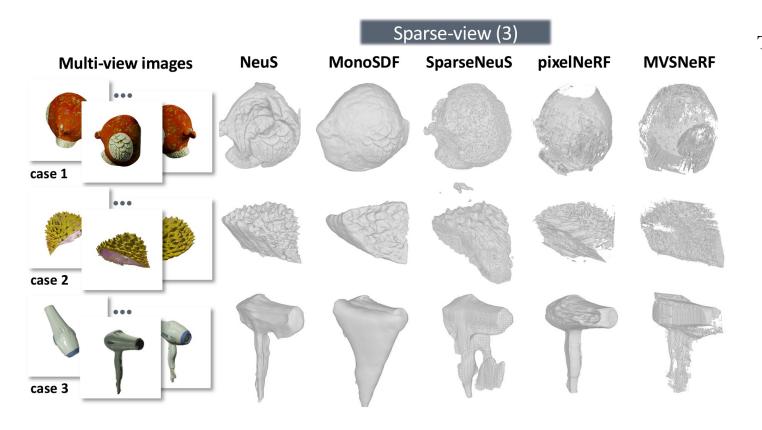
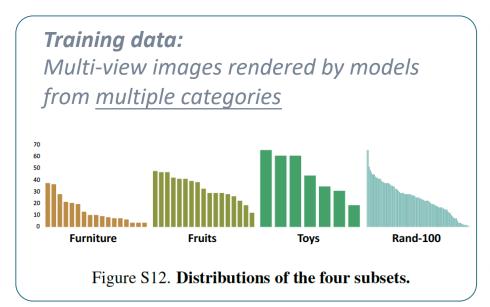



Table 6. Sparse-view (3-view) surface reconstruction results.

| 36.1.1          |           | Chamfer Distance $\times 10^3$ ( $\downarrow$ ) |        |       |       |  |  |
|-----------------|-----------|-------------------------------------------------|--------|-------|-------|--|--|
| Method          | Train     | Hard                                            | Medium | Easy  | Avg   |  |  |
| NeuS [90]       | Single    | 29.35                                           | 27.62  | 24.79 | 27.3  |  |  |
| MonoSDF [106]   | Single    | 35.14                                           | 35.35  | 32.76 | 34.68 |  |  |
|                 | 1 cat.    | 34.05                                           | 31.32  | 31.14 | 32.36 |  |  |
|                 | 10 cats.  | 30.75                                           | 30.11  | 28.37 | 29.87 |  |  |
|                 | All cats. | 26.13                                           | 26.08  | 22.13 | 25.00 |  |  |
| SparseNeuS [54] | Easy      | 28.39                                           | 26.65  | 23.76 | 26.48 |  |  |
|                 | Medium    | 27.38                                           | 26.66  | 23.08 | 25.87 |  |  |
|                 | Hard      | 27.42                                           | 26.95  | 24.63 | 26.47 |  |  |
| MVSNeRF [11]    | All cats. | 56.68                                           | 48.09  | 48.70 | 51.16 |  |  |
| pixelNeRF [105] | All cats. | 63.31                                           | 59.91  | 61.47 | 61.56 |  |  |


## **3D Object Generation**



Differentiable rendering

Discriminators

#### **□** 3D object generation with textures



# GET3D (Gao et al. 2022) $\mathbf{x}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{2}$ $\mathbf{y}_{2}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{2}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{5}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{6}$ $\mathbf{y}_{7}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{3}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{5}$ $\mathbf{y}_{5}$ $\mathbf{y}_{5}$ $\mathbf{y}_{6}$ $\mathbf{y}_{7}$ $\mathbf{y}_{1}$ $\mathbf{y}_{7}$ $\mathbf{y}_{1}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{1}$ $\mathbf{y}_{2}$ $\mathbf{y}_{3}$ $\mathbf{y}_{4}$ $\mathbf{y}_{5}$ $\mathbf{y}_{5}$ $\mathbf{y}_{5}$ $\mathbf{y}_{6}$ $\mathbf{y}_{7}$ $\mathbf{y}_{$

Textured mesh

Texture generator

Mapping network

# **3D Object Generation**





3D Object Generation



Interpolation across different categories

### **3D Object Generation**



(d) group-level statistics

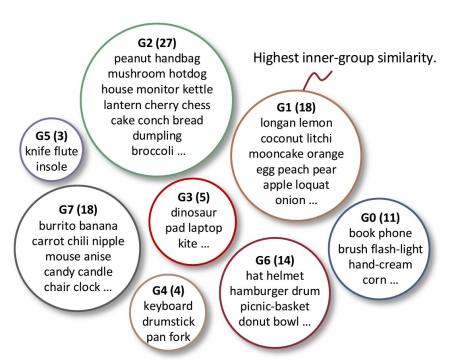
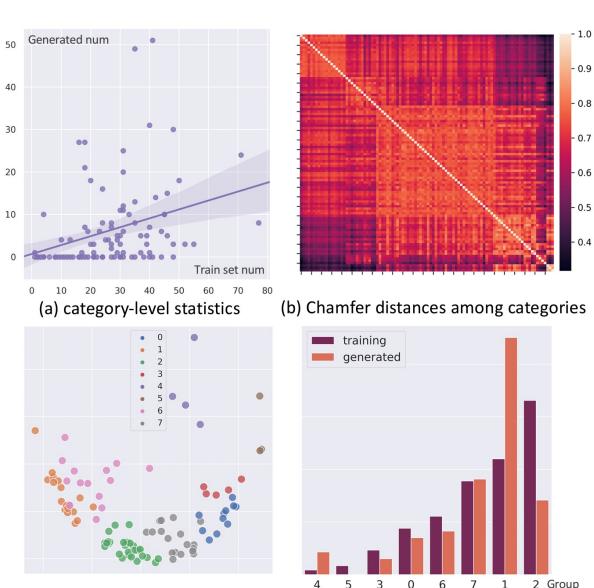




Figure S11. Categories in each group after the KMeans clustering. Categories in Group 1 are highly similar to each other, while those in Group 2 bear a high inner-group divergence.



(c) category groups

#### Limitations and future works



#### Data

More data: to support more extensive task requirements. Our data is still growing.



- **Broader distribution**: both domestically and internationally.
- **More modalities**: including language and various sensor types.
- **Higher complexity**: pushing beyond the limitations of 3D scanning technology.

#### **Tasks**

- 2D/3D detection; 6D pose estimation
- **Human-object interaction**
- Object in scene

#### **Limitations and future works**



# Thank you!



Project page