

WED-AM-287

Inferring and Leveraging Parts from Object Shape for Improving Semantic Image Synthesis

Yuxiang Wei^{1,2}, Zhilong Ji³, Xiaohe Wu¹, Jinfeng Bai³, Lei Zhang², Wangmeng Zuo¹

¹Harbin Institute of Technology, ²The Hong Kong Polytechnic University, ³Tomorrow Advancing Life

Paper: http://arxiv.org/abs/2305.19547

Code: <u>https://github.com/csyxwei/iPOSE</u>

Semantic Image Synthesis

- Semantic Image Synthesis
 - Generating semantically aligned and photo-realistic images with the given semantic maps.

- Our Goal
 - Generating images with realistic object parts

Our iPOSE

• We propose to infer parts from the object shape and leverage it to improve semantic image synthesis.

Motivation

• Existing methods only exploited the object-level semantic information for image synthesis, and usually failed to generate photo-realistic object parts.

PartNet

Support Part Mask

PartNet

$$\mathcal{L}_{pre} = \text{BCE}(\text{PartNet}(O_q, S_{y_q}), P_q^{gt}), \qquad \mathcal{L}_{rec} = \text{BCE}(\text{PartNet}(O_q, P_q^{gt}), P_q^{gt}).$$

Part Dataset

de Geus, Daan, et al. "Part-aware panoptic segmentation." CVPR 2021.

Part Semantic Modulation

• To achieve a disentangled synthesis, we inject the part and semantic sequentially.

$$\mathcal{L}_{G}^{global} = \mathbb{E}_{I}[\log D(I)] + \mathbb{E}_{M,Z}[\log(1 - D(G(M, P, Z)))],$$
$$\mathcal{L}_{G}^{global} = \mathbb{E}_{M,Z}[\log(1 - D(G(M, P, Z)))],$$

$$\mathcal{L}_{style} = \max\left(\frac{1}{n}\sum_{i}\min_{j} C_{i,j}, \frac{1}{m}\sum_{j}\min_{i} C_{i,j}\right)$$

Qualitative Comparison

Quantitative Comparison

Method	Cityscapes			ADE20K			COCO-Stuff		
	FID (↓)	AC (†)	mIOU (†)	FID (↓)	AC (†)	mIOU (†)	FID (↓)	AC (†)	mIOU (†)
SIMS [30]	49.7	75.5	47.2	n/a	n/a	n/a	n/a	n/a	n/a
SPADE [28]	71.8	81.9	62.3	33.9	79.9	38.5	22.6	67.9	37.4
CC-FPSE [23]	54.3	82.3	65.5	31.7	82.9	43.7	19.2	70.7	41.6
SC-GAN [49]	49.5	82.5	66.9	29.3	83.8	45.2	18.1	72.0	42.0
OASIS [34]	47.7	n/a	69.3	28.3	n/a	48.8	17.0	n/a	44.1
RESAIL [37]	45.5	83.2	69.7	30.2	84.8	49.3	18.3	73.1	44.7
SAFM [25]	49.5	83.1	70.4	32.8	86.6	50.1	24.6	73.4	43.3
SDM [48]	42.1	n/a	77.5	27.5	n/a	39.2	n/a	n/a	n/a
Ours	41.3	82.2	70.6	26.9	87.1	53.8	15.7	74.8	45.1

Multi-modal Synthesis

Original

Remove Light

Remove Wheel

Remove License

Ablation Study

Part Inject	$\mathcal{L}^{g}_{G/D}$	\mathcal{L}_{style}	$\text{FID}(\downarrow)$	$\text{mIOU}(\uparrow)$	$\mathrm{AC}(\uparrow)$	obj FID (\downarrow)
	\checkmark	.(47.7 43.6 42.8	66.9 66.7 70.5	81.5 81.9 82.1	44.1 39.2 37.5
Ours PSM	∨ √	✓ ✓	41.3	70.6	82.1 82.2	30.4
SPADE Concat	\checkmark	\checkmark	42.9 42.7	69.9 70.6	81.9 82.0	31.2 31.5

Take Home Message

- We propose a method iPOSE to infer parts from object shape and leverage them to improve semantic image synthesis.
- A PartNet is proposed to predict the part map based on a few support part maps, which can be easily generalized to new object categories.
- A part semantic modulation Resblock is presented to incorporate the predicted part map and semantic map for image synthesis.
- Global adversarial and object-level CLIP style losses are further introduced to generate photo-realistic images

Thank you!

Paper: http://arxiv.org/abs/2305.19547

Code: <u>https://github.com/csyxwei/iPOSE</u>